

DTIB
BSc Games Design & Programming

AI DIRECTOR ANALYSIS OF MUTLI-
AGENT GUIDING
Adam Shrimpton, s014088m, Supervisor: Shaun Reeves

1

Table of Contents
Table of Figures ... 2

Glossary ... 2

Key Words ... 2

Abstract ... 3

Introduction .. 3

Aim .. 3

Objectives.. 3

Literature Review .. 3

How can a director manage agents to act cohesively in movement and interactions? 3

How can an AI be created to respond to Hazards in real-time? ... 8

How can difficulty be scaled for an AI? ... 12

How can group AI be balanced for a player .. 14

Research Methodology ... 17

Gantt Chart.. 18

Scope ... 18

Results and Findings .. 18

Discussion and Analysis ... 25

Conclusion ... 28

Bibliography .. 29

Appendices .. 31

Appendix 1: Gantt Chart ... 31

Appendix 2: Title ... 31

2

Table of Figures
Figure 1 Coffin Collider.. 6

Figure 2 – Area path & Euclidean Distance Representation ... 7

Figure 3 – Pacman State Diagram ... 9

Figure 4 - Yosh Trackmania Learning Time Graph .. 12

Figure 5 - Deep Rock galactic Difficulties Chart .. 13

Figure 6 - Payday 2 Detection Meter .. 15

Figure 7 Community researched probability distributions for Mario Kart 8 Deluxe (Anon., 2024) 16

Figure 8 - Gantt Chart ... 18

Figure 9 - Standalone Firing Tests ... 19

Figure 10 - Director Token Firing Tests ... 20

Figure 11 - Movement Test Route .. 22

Figure 12 - Movement Test Results .. 22

Figure 13 - Environment Test Results ... 24

Figure 14 - Custom EQS Generator ... 26

Figure 15 - Cone EQS Generator ... 26

Glossary
AI - Artificial intelligence

A* - A Star

ANN – Artificial Neural Network(s)

BT – Behaviour Tree

DDA – Dynamic Difficulty Adjustment

DL – Deep Learning

DNN – Deep Neural Network

DRG – Deep Rock Galactic

EA – Electronic Arts Inc.

EQS – Environment Query System

FSM – Finite State Machine

FuSM – Fuzzy State Machines

JPS – Jump point search

NavMesh – Navigation Mesh

ML – Machine Learning

SWAT – Special Weapons and Tactics

TTK – Time to Kill

Key Words
Artificial Intelligence

Decision Making

Behaviour

Game Balance

Difficulty Scaling

3

Environment Query System

Abstract
AI systems within games often lack in depth and cohesion which leads to predictable behaviours and

no meaningful difficulty scaling. This project explores several key components of Artificial

Intelligence using technologies for group behaviour. It examines algorithms used to optimise

locomotion using pathfinding and steering behaviours and evaluates decision making models for

effective AI behaviour. Additionally, the study considers the role of token systems to manage

weapon firing and how this system could be used to dynamically scale difficulty of an AI. Whilst

promising results were observed in some areas, further research is necessary to reach conclusive

outcomes and refine the solution.

Introduction
What is the reasoning behind this project?

With an interest in artificial intelligence (AI), and a fan of First-person shooters, a focus to research

and investigate methods that incorporate AI in a director system to better the understanding in AI

and practice techniques to improve AI programming skillset.

Why is an AI Director system the focus of this study?

This specific interest for an AI Director to manage artificial intelligence was inspired by the game

Alien Isolation, which uses a dual AI controller to provide a thrilling experience. This project is to try

to create and expand a director system into a multi agent system allowing for dynamic game

balance.

Aim
What does this study hope to achieve?

The aim of this project is to create an AI Director system that controls a group of AI in a SWAT team
through a combat environment.
The AI group must detect and overcome hazards within the level as they appear, hazards will
present themselves as traps and enemies. The AI will respond to these hazards with the appropriate
actions as managed from the “Director” AI

Objectives
• How can a director manage agents to act cohesively in movement and interactions?

• How can an AI be created to respond to Hazards in real-time?

• How can difficulty be scaled for an AI?

• How can group AI be balanced for a player?

Literature Review

How can a director manage agents to act cohesively in movement and interactions?
How can AI travel as a group?

Steering Behaviours

“Steering behaviours are an amalgam of different behaviours that are used to organically manage

the movement of an AI agent.”, usually on a 2D Plane due to behaviours being easier to implement

(jb-dev, 2018).

A steering behaviour system works with child behaviours calculating a vector representing how that

4

behaviour would like the agent to move. The result of all vectors combined produce a final desired

velocity that the agent will steer towards (Fray, 2013).

Common steering behaviours include:

Seek & Flee

A force acting to steer the agent towards a location, the behaviour adjusts the agent so that the

agent’s velocity is radially aligned towards the target (Reynolds, 1999). Calculating a seek vector is

simple, subtract the current position from the seek target, this results in a desired vector towards

the target.

Flee is the opposite behaviour of seeking calculating a force to move the agent away, this is

calculation is simple as subtracting the flee target from the current agent’s position (Coenen, 2016).

Pursuit & Evade

Pursuit and evade are very alike to their base function of seek and flee except for the fact these

behaviours use the targets velocity to predict where the target should be (Coenen, 2016). This is

calculated by getting the desired velocity like flee and seek. Then the distance and targets current

velocity is multiplied together and added to the targets location resulting in the agents desired

vector to flee or seek.

Arrival

The arrival behaviour is the idea of an agent that will gradually slow down until it reaches its

destination. When the behaviour is active the distance between the target and the current position

of the agent and will change its maximum move speed accordingly (jb-dev, 2018).

Wander

Wander is often used in games when the agent does not have a task to complete and awaits an

action. Simple options include picking a random position and seek towards that position, but this

results in unrealistic behaviour. A better implementation is having a circle projected in a set distance

away matching the velocity of the agent. This circle can then have a random radial direction from the

central point on the circle which acts as a displacement from that location to seek to. This is updated

each frame with slight adjustments to the random radial direction by subtracting or adding small

increments (Coenen, 2016).

Collision Avoidance

Unaligned collision avoidance behaviour attempts to stop agents moving in arbitrary directions from

colliding. To implement this an agent needs to consider other agents velocities and determines when

the two will make their nearest approach. If a potential collision will occur then the two agents will

steer to turn away from the potential collision (Reynolds, 1999).

Separation

Separation behaviour gives the agent the ability to maintain a distance from other agents within its

vicinity, this can be used to prevent agents from crowding together. To calculate separation of

agents a radial search is done to find the other agents that it would separate from, the flee method

is invoked for each position of those found agents, added together and normalised to find the final

steering direction (Reynolds, 1999).

Cohesion

Cohesion behaviour gives an agent the ability to form a group with other agents, this is a similar

calculation to the separation behaviour but inversed so agents are all seeking towards a point

5

determined by the averaged position (Reynolds, 1999).

Whilst steering behaviour locomotion is quick to calculate, “steering behaviours will not navigate

through a complex environment.” (Roberts, 2023) This error could be seen in the racing genre when

using the flock behaviours to race the AI cars as seen in the F1 game (Codemasters, 2010). Often

small movements from the player could cause immersion breaking results which led to missed

overtaking opportunities, poor overtake blocking and sometimes even collisions (Fray, 2013).

Pathfinding

Pathfinding is the process of finding the shortest route between two end points (Xiao Cui, 2011).

Many algorithms deal with this problem such as A*, Dijkstra and JPS. In a game it is important for a

pathfinding algorithm to remain somewhat realistic, that is why the AI must calculate the path

quickly and generate a path that is reasonable to the player. (Roberts, 2023, p. 91)

Generating a path quickly is imperative for games because no other game system will be able to run

whilst the pathfinding algorithm is running which will cause lag spikes and frame drops, this effect

when calculating paths can be mitigated by calculating the process over several frames to allow

other systems to run their processes. The drawback of calculating over several frames is a reduction

in perceived intelligence as the AI will have minimal action whilst waiting for the calculation to finish.

To further minimise this behaviour of standing still, shorter paths can be created which follow the

rough path whilst the AI is travelling. This way the AI will have the next path ready by the time it

reaches its current pathfinding destination. (Roberts, 2023, pp. 91-94)

Spatial Representation – Pathfinding Subheading

Spatial representation is the process of graphing a space into mathematical equations that can be

later used by pathfinding algorithms to find the quickest route to the desired location. Representing

the space mathematically is possible in multiple ways, but the core approaches focus on Grid Based,

Waypoint and NavMesh.

Grid Based involves breaking down the navigable area into cells to explore, when calculating a path

each cell has a value and once the target location is found the shortest path is calculated by working

through nodes with the smallest value. This method of representation works for small simple areas,

but on a larger scale calculation increases due to the volume of cells that would need a path

calculating.

Waypoint search requires nodes in the world that can selected, the AI is then able to jump navigate

between these nodes similar to the grid-based approach.

Waypoint nodes require hand placement but could be generated through the use of a tool. Although

this approach is good for large complex environments, it lacks the ability to navigate to anywhere

between those waypoints which is not reasonable for believable game AI.

NavMesh spatial representation requires existing points similar to the waypoint method, more

nodes are required initially due to the mesh needing outer nodes to link to form polygons.

As the polygons generate, unnecessary nodes are removed, and a node is created in the centre of

the polygon which acts just like the waypoint method. By allowing for traversal between the nodes,

this works well for user curated levels due to the adaptability of the algorithm.

6

Among pathfinding algorithms, A* is the most used (Roberts, 2023, p. 91). Popular game Engines

such as Unreal Engine and Unity both use A* for their AI systems with a NavMesh to reduce

pathfinding calculation time whilst maintaining realistic pathing.

How can AI find information about the world?

AI can obtain information about the world using few methods that mimic human levels of

perception. Frequently used methods include perception and Environmental Query Systems (EQS) or

custom trace systems.

Perception

As games progress to include increasingly advanced AI, perception awareness models have become

common for AI systems. Perception systems are used to mimic human primary senses and prompt

decisions from the data obtained by the artificial senses. This data can aid in creating a believable AI

that only knows information from the perspective of the agent.

Visual perception models in games commonly use a cone to model what an NPC can see in front of

them but lacks in modelling other aspects such as peripheral and distanced vision (Walsh, 2015, p.

314).

Distanced vision from a cone model is inaccurate because as the cone distance increases so does the

search radius which suggests that the ai will perceive objects more laterally the further away

something is. This problem can be reduced by using a box view (a cuboid shaped collider) to detect

primary vision instead of a cone, this is due to the box not having an increased size as it gets further

away.

In the game ‘Tom Clancy’s Splinter Cell Blacklist’ the solution was to use a coffin shaped collider to --

--allow for peripheral and primary vision, this collider would expand outwards to a point like a cone

to create the peripheral blindness and then contract as the collider gets further away from the NPC

which reduces the lateral visibility (Walsh, 2015, pp. 314-316).

Figure 1 Coffin Collider

7

Auditory perception, another key sense often used in games, is used to create an additional layer of

behavioural intelligence to an AI.

Creating an audio event for an AI to hear is easy, but the calculation of hearing distance is not as

simple. Checking the Euclidean distance from the noise source to the agent like it would be for sight

would not be effective, because an AI could hear through walls using that method (Walsh, 2015, p.

320).

A solution is to calculate an area path that the sound would travel to the agent, this is done by

getting the closest route to the doors leading to the player and calculating the length of the vectors

as seen in Figure 2 – Area path & Euclidean Distance Representation

Figure 2 – Area path & Euclidean Distance Representation

Unreal Engine has a specialised AI perception system which uses artificial senses to obtain

information about the environment, these senses search for actors that can return a positive value

based on a sense configuration. Sense configurations allow for different detection methods such as

sight, hearing, damage and touch. Stimuli data returns an actor which information such as location,

owner or team can be returned. As an AI receives stimuli information, it filters data and stores any

relevant information for decision making. (Epic Games, 2024)

Environment Queries

Environment queries can used to get information about the world through a variety of traces and

collision tests. These tests are used for making simple decisions such as choosing between health or

ammo pickups, enemy threat analysis and distance from player. A Query has three main

components:

• Context Object: a game entity that is querying the environment. This is crucial as the entity will

be able to ask if locations are visible from its current location or if they were in range of an

object.

• Query Template Id, which question is it that we are asking the entity to run.

8

• Items: An array of items returned in the test. This list can be filtered by items failing further

query tests

(Zielinski, 2013).

Unreal Engine has their own system to handle this called EQS (Environment Query System) which

allows for these tests to be ran in tandem with their behaviour tree systems (Epic Games, 2024).

In the Unreal Engine EQS workflow, a generator node is required to state the sample locations from

which the system will collect data. This generator is supplied with an object’s position and will act as

the reference point for the tests conducted. The best fed option(s) are returned as the result of the

query (Haapanen, 2021, p. 11).

The Flexibility of EQS allows for tweaking the logic of a query and their attributes easily but requires

a complex approach for creating custom generators which will slow down development iterations

due to the increased workload.

Whilst the iteration process is fast for non-custom generated queries the system is limited by the

amount of unnecessary data produced by empty generated points which each need to be weighed

and tested against the queries. (Haapanen, 2021, pp. 40-41)

How can an AI be created to respond to Hazards in real-time?
What types of real-time decision-making methods are there?

Realtime decision making is critical for games because players actions will affect how the AI should

respond. There are a few common decision-making models that are widely used within gaming that

allow a range of simple to complex actions varying in complexity to implement.

State Machines (Finite State Machines & Fuzzy State Machines)

Finite State machines (FSM) are solutions to managing how an AI can act, typically used in simple or

early models of AI (Roberts, 2023). Only one state can be active at a time, these states are comprised

of actions that need to be followed, for example an explore state would contain an action to move

randomly and seek opponents (Yannakakis, 2018, p. 33).

A limited number of behaviours are programmed into the AI which are selected that allow

transitions between each state. Dependant on use, states are capable of transitioning between a

single or multiple others dependant on the required exit condition to transition. Pac Man is a good

example of this with two exit conditions from the evade state as seen in Figure 3 – Pacman State

Diagram. If the power pellet is not active or the ghost has been eaten, the ghost will transition from

the state out into a chase mode or return home.

9

Figure 3 – Pacman State Diagram

FSMs are limited in complexity due to the use of the same conditions which allow for the state

swapping, this can potentially break the emersion for a player if they spot the pattern. Another

drawback is that the AI will only be in a single state at any time. (Roberts, 2023) Another issue is

state thrashing, The AI could swap between two states with opposing actions repeatedly which gives

the appearance of becoming stuck.

Fuzzy State Machines (FuSM) help solve the issue of single states that FSMs have by implementing

available states that can be partially triggered, this means that an agent could have 40% towards

state 1, and 60% towards state 2, these are fuzzy sets. Fuzzy sets allow for membership to be

calculated towards a state to have a partial output. Instead of having set value ranges we can assess

the membership based on a graph, this will allow for membership scaling to target different

behaviours together with different activation points in the same query which will reduce the number

of conditional statements that a FSM has. (Roberts, 2023, pp. 155-159)

This mixing of states allows for layer of complexity and unpredictable behaviour compared to the

state machines but will also have a higher calculation cost due to the requirement of calculating

every state contribution anytime the states are evaluated.

Behaviour Trees

A Behaviour tree is a knowledge system similar to an FSM. BT’s due to their transitions between

behaviours, “the strength of BT’s compared to FSMs is their modularity”. (Yannakakis, 2018, pp. 34-

35)

BT uses a tree structure with a root node and branching child nodes which represent behaviours.

Executing a behaviour tree starts with the root and sequentially executing parent-child pairs.

Dependant on the type of composite node a child will return a value of failure or success.

Sequence Nodes will execute all the children until one fails, if one child fails the sequence is aborted

and returns a fail.

A Selector will execute a node on a condition, if there is no condition the selector will try to find a

child that succeeds then return the success result.

10

Decorators will enhance the complexity of a single child behaviour, this can be improved through a

select number of times to execute or a set time for the task to be completed. This will return the

condition of the task.

In addition to failure and success states a tick state will continue execution until a result state is

returned, the branch execution will not proceed until this has finished. This is useful for nodes that

require a pathfinding to be completed first.

In comparison to FSMs, BTs are more flexible to design and easier to test but suffer from low

dynamicity due to being a static knowledge representation (Yannakakis, 2018, p. 37).

Utility-Based AI

Utility Based AI, a popular decision-making method, removing the modularity limitations of BTs and

FSMs by implementing an ad-hoc style of behaviour authoring (Yannakakis, 2018, p. 37). This

approach to AI is less popular in academia than in the game industry because Utility AI is primarily a

design-based technique (Świechowski, 2024, p. 1).

The design of a Utility based System follows a similar method as a FuSM with its membership

functions and fuzzy sets.

The data measured in this system can be anything from an observable object (e.g., health, ammo) to

subjective data such as emotions, mood and threat (Yannakakis, 2018, p. 37). The fuzzy sets allow

for linear or non-linear formulas to be evaluated every n frames which make a decision based on the

aggregated utility value of each function. Whilst BTs and FSMs only evaluate one decision at a time,

Utility Based AI architectures will examine all options and assign a utility. Once all utilities have been

assigned the highest utility value will be selected (Yannakakis, 2018, p. 37).

It is critical that for utility based AI should not be assigned fixed weights as it would take away the

responsiveness and dynamicity of the system at runtime (Dill, 2015, pp. 23-24).

The advantage of Utility Based AI is that it better handles the different options where more than one

action could be taken. Additionally, behaviour can be manually tailored by changing the heuristic

functions of each utility which allows for designers to maintain more control over the behaviour that

the AI will have (Dill, 2015).

A drawback for Utility AI is having no built-in mechanisms for handling uncertainty, this could be

seen in games such as poker where the data in the hand is known but everything else is unknown

(Świechowski, 2024, p. 1).

Neural Networks, Machine Learning & Deep Learning

Recently AI Researchers focus on breakthroughs in generative AI, a type of AI that creates new

media such as text, audio and controversially images/video. Machine learning (ML) is a large part of

this debate with lots of different techniques, but one of the most important learning algorithms is a

Neural network (Cole Stryker, Eda Kavlakoglu, 2024).

Neural Networks

(Artificial) Neural Networks (ANNs) are a biological inspired approach for intelligence and machine

learning which use neurons, (also referred to as nodes) to process information. (Yannakakis, 2018, p.

59). Every ANN involves layers of nodes, an input layer, one or more hidden layers, and an output

layer (IBM, 2024).

11

Each layer accepts inputs from the prior layer, modifying it with built in weights before passing it

through an activation function. The output from that function is then passed forward to the next

layer, and the process repeats until the output layer is reached (Roberts, 2023, p. 264).

Machine Learning

Machine learning (ML) is a subset of AI that gives computers the ability to learn without being

explicitly programmed. ML is defined as the capability of a machine to imitate intelligent human

behaviour through and perform tasks in a way similar to how humans solve problems (Brown, 2021).

Within ML three main learning methods exist. Supervised, Unsupervised and Reinforcement

Learning (IBM, 2024).

Supervised Learning is defined by the use of labelled datasets to train the algorithm to classify data

and predict outcomes. As data is given to the model it adjusts the weights of the neurons until it

provides an accurate result. This method is used for classification of spam emails in the real world

and is used at scale (IBM, 2024).

Unsupervised Learning is providing the model with unlabelled data to find patterns or trends that a

human may not be looking for, such as sales correlation between demographics (Brown, 2021).

Benefits of this approach is that the model does not require monitoring to correctly identify

information (IBM, 2024).

Reinforcement Learning is an approach similar to how humans learn using positive and negative

reinforcement for actions. In reinforcement learning samples of positive results are usually not

available which makes the process similar to trial and error as to find the correct result (Yannakakis,

2018).

Deep Learning

“Deep Learning is a further subset within Machine Learning and is often thought of as scalable

machine learning because it automates a lot of the feature extraction process and eliminates some

of the human intervention involved. “ (Aggarwal, 2024)

Deep Neural Networks (DNN) are similar to ANN with each layer building on the previous to optimise

and predict by passing data forward, this method is called forward propagation (Jim Holdsworth,

2024). It is considered that a Neural Network is actually a DNN when it is comprised of three or more

layers and outputs (IBM, 2024). Typically, within DNN, hundreds or thousands of layers are used to

train the models (Jim Holdsworth, 2024).

With DL a large amount of computing power is required due to the volume of calculations that the

Neural Network needs to complete. Graphical Processing Units (GPUs) are ideal for this due to the

large volume of calculations and multiple cores with surplus memory available (Jim Holdsworth,

2024).

In comparison to ML where supervised learning models require structured data, DL models are

capable of unsupervised learning by extracting characteristics, features and relationships that allow

for accurate outputs using raw data (Jim Holdsworth, 2024).

Uses of Machine Learning and Deep Learning in Games

ANNs are also applicable to games by teaching an AI to play a game.

YouTuber Yosh, has a series wherein he attempts to use ML with the reinforcement model to train

an AI to play Trackmania (Ubisoft, 2020). In his project he sets a time for the AI to compete with on a

snaking track with no side barriers set by an experienced player. The AI learned using a

reinforcement learning strategy and actions assigned a point value on success. After hundreds of

attempts and at least 75 hours of learning, the AI beat the drivers time as seen in Figure 4 - Yosh

12

Trackmania Learning Time Graph. As training time increased, with 400+ hours of learning the AI

were capable of beating the goal time by 7 seconds, this makes beating the AI time on the same

track as a human near impossible (Yosh, 2023).

Figure 4 - Yosh Trackmania Learning Time Graph

The problem with the AI using ML is that even after 500 hours of training the AI was incapable of

consistently producing results that the driving route on other maps. “The AI was less precise; it

makes more mistakes and sometimes gets completely confused” (Yosh, 2023, p. 11:15).

Games using ANNs/MLs is not ideal because it slows developers adding new AI features in post

launch updates, due to the AI will have to be partially or fully retrained to learn the new behaviour.

In addition to the time it takes to train, “results can be unpredictable, which goes against the idea of

games being an authored experience” (Roberts, 2023, p. 279).

The use of ANNs is to create repetitive tests trying different values for weights for each neuron to

get the AI to ‘learn’ how to behave. This method of AI Decision making requires a lot of training to

get an accurate result due to the iterative design in the learning, each test is given a rating on result

desirability and the most successful result is used as a baseline for the next test. Once the AI is fully

trained it should be able to work in the environment it was trained in accurately (Roberts, 2023, pp.

273-274). The drawback of ANNs using reinforcement learning is that procedural systems will need a

longer model training time to be accurately trained due to the environment changing often. This

means that an AI will have to learn the patterns of the environment generation as well as the best

actions to take from within the environment which will inflate training time.

How can difficulty be scaled for an AI?
A game experience is considered satisfying or entertaining when it is difficult to beat, which may be
true for a large portion of experienced gamers but when it comes to the casual market, The game is
most entertaining when it is challenging yet beatable (Chin Hiong Tan, 2011). By having a game AI
scale difficulty to match the performance of a player a game could be made for players of all skill
levels.
To make games more difficult a developer can increase difficulty by making enemies more

13

aggressive or giving them more powerful weapons, additionally they can spawn more enemies or
reduce player pickups. (Barriales, 2017)

Value Scaling

When scaling AI Difficulty, tweaking values is a useful way to quickly affect change as they would be
readily available and will not require adding behaviour which will take longer to program. Many
games tweak values between difficulties but a game that handles value tweaking well is Deep Rock
Galactic (DRG) (Ghost Ship Games, 2018).
In DRG there are 5 hazard levels which act as difficulties. Hazard 1 is the easiest, and 5 the hardest
difficulty. Each difficulty scales differently based on how many players are in the lobby. When it
comes to scaling there are both player and enemy values to consider.
To scale DRG difficulty simple metrics such as attack speed, movement speed and damage are
tweaked on the AI end which causes them to become far more difficult to overcome (Ghost Ship
Games, 2024). As seen in Figure 5 - Deep Rock galactic Difficulties Chart, enemies become much
harder to kill from their increased stats like damage, attack speed and movement speed. This small
tweak creates a large change in the game feel because the survivability of the player decreases when
paired with the rank and the number of enemies increasing.

Figure 5 - Deep Rock galactic Difficulties Chart

Behaviour Frequency – Combat Accuracy.

Within shooter games AI will try to find a firing location to the target with a variety of other
behaviours included such as taking cover or reloading in order to kill the player. With this basic
behaviour set, a problem arises of multiple AI shooting and hitting the target at the same time,
which instantly kills the player (Barriales, 2017).
A Tokenised System will address the one-hit kill by taking turns to shoot (and hit) the player by

14

granting an AI a token. This token determines whether the AI can deal damage. Within this system
the AI can freely enter any shooting behaviours but will deliberately miss the shot and hit any
location that is not the player if they do not have a token (Barriales, 2017).
Deciding how to distribute the Token is another measure that designers should be able to tweak, a
token will have many factors to decide which agent gets it. This may include anything from time
since last player hit, distance from target, or weapon dependant on how expansive the system is
(Barriales, 2017).

Dynamic Difficulty

Difficulty is a critical factor in games and is challenging to set correctly. (Su Xue, 2016, p. 1) Dynamic
Difficulty Adjustment (DDA) helps alleviate the issues of manually setting difficulty values and adding
behaviour to scale difficulty. The use of DDA allows for maximising player engagement by measuring
metrics such as wins, number of rounds played, duration played and session days and used tuning
the game to make it easier or more difficult based on success (Su Xue, 2016, pp. 1-5).
Electronic Art’s Inc (EA) Conducted a study using their match-three genre of games, Candy Crush
Saga and Bejeweled, which tracked player engagement using the DDA method and found that they
could optimise play using this method to maximise the player engagement (Su Xue, 2016).

How can group AI be balanced for a player
What metrics can be used for balancing games?

Balancing a game has no standardised metrics that a designer should use, but this does not mean

metrics cannot be created that will help a designer balance the game based on the product they

have created.

Slay the Spire is a 2D rogue-like turn-based card fighting game where the player uses cards and

attack the enemies based on what cards are pulled from their deck.

Previously the developers have stated that their balancing approach, was to gather any relevant

information at the end of a run and analyse the data. This ranged from enemies, cards, relics, events,

player choices and time to complete (Giovannetti, 2019, p. 9:25). With these metrics it was not

about aiming to make every card equally good but rather shooting for a more sensible win rate

target.

Overwatch 2 uses metric tracking to enable the designers to tweak the live service experience.

Statistics for each character are collected such as character selection, win rate, accuracy,

eliminations and damage taken / given to name a few, this can be seen in game from the career

history tab. These statistics are used to tweak each balance patch by interpreting the data.

How can AI make the game fair for the player?

AI Perception Balancing

Stealth games are known to have perception and awareness models for NPCs making it important

that they are balanced correctly as to not break the immersion of the game world. It is believed that

for a successful AI Perception system it must include the following.

Fairness

In a stealth game, getting detected will be a pivotal moment, it could be the difference between a

player winning or failing the mission. Having perception models feel fair, like they are not cheating is

a difficult task since the models themselves are subjective to what is fair. (Walsh, 2015)

Consistency

The player must be able to perceive the AI’s behaviour so that they can strategise and plan, this

15

means creating a somewhat AI predictable. This contrasts to all humans being unpredictable and

varying reactions between individuals (Walsh, 2015).

Feedback

Whilst the player needs to be able to predict the AI’s behaviour, there needs to be affordance to

help the player understand what is happening, this can be seen within Payday 2 having a radial

awareness meter that ticks up until the player is detected by the AI. Once detected, the radial wheel

adds the words detected onto the screen as well as having an exclamation mark at the top as seen in

Figure 6 - Payday 2 Detection Meter, this directly tells the player that they are spotted and need to

act.

Figure 6 - Payday 2 Detection Meter

Perceived Intelligence

To have an AI that does not achieve a level of intelligence that is believable, is not satisfying to beat.

This requires having an AI not necessarily be dumb but does not also require it to be smart.

Balancing intelligence is about having plausible behaviour to convince a player that the character the

AI is controlling would act in that way (Walsh, 2015). This means that if an AI hears a gunshot or has

the player hit them, the expected reaction is to enter an alert / combat state, if the AI was to

continue with the current state, the AI would not be convincing and looks inept.

Limiting AI Knowledge

Having an AI know everything feels like cheating and could lead a player to get frustrated. Many

developers will attempt to limit the knowledge of an AI to prevent this frustration. A great example

of this would be Alien Isolation.

Alien Isolation’s AI is held in high regard and still talked about many years after its release for the

usage of a twin AI controller known as a director system. This system would feature an overarching

AI that knows all the information about the world, for example, it would know the position of points

of interests, hiding spots and most importantly the player. With this information it could direct the

AI towards areas that would allow the steering behaviour agent (The alien) to find and hunt the

player. By obfuscating this data, the alien must hunt for the player which creates a more intense

experience as the alien is not mimicking a search state by pretending to know the player’s location

(Thompson, 2016).

16

Removing Behaviour

In ‘The Last of Us’ during development, the buddy AI ‘Ellie’ had trouble in combat as she would

become “a killing machine”. The developers did not want to change the damage output of the

weapons that Ellie had, so altering firing values and hit behaviour was the route they chose to take.

The behaviour was tweaked so that when the player is not looking at the enemy Ellie was shooting

at, the buddy did not need to do damage but still appeared to be in combat. When the targeted

agent was visible again, the buddy would be required to do damage. This helped keep players

immersed within the game rarely realising that the buddy was not doing damage (Dyckhoff, 2015).

Mario Kart – Item Probability

Mario Kart, although not being an exclusive example of AI balance, explores game balance through

in-game items probability. Mario Kart 8 Deluxe has 23 Items which the drivers have access to which

have different abilities (Nintendo, 2024).

As the player gets further behind the first-place driver, more powerful items are likely to be selected

in the loot table. Items such as the Star or Bullet bill are the most effective items due to the ability to

speed up the player and forcefully control the driver’s movement to increase their podium position.

As seen in Figure 7 Community researched probability distributions for Mario Kart 8 Deluxe (Anon.,

2024), Some items such as the red shell trio are disabled for an AI driver, this is because these items

are powerful. Given the situation of a driver in 2nd could potentially receive a red shell trio, this gap

between 1st and 2nd will be easily shortened by the first-place driver being stunned by shell after

shell with minimal defence from their own items.

Figure 7 Community researched probability distributions for Mario Kart 8 Deluxe (Anon., 2024)

17

Research Methodology
Quantitative research asks for an individual to fill form(s) with questions asking for opinion-based

answers with a numerical output after a test has been completed. This scale be plottable data that

can be used for visual graphics to help analyse data and reinforce statements.

Quantitative research allows for lots of participants and allows for data to be represented in real-

time due to the data having set parameters. This allows for bar graphs/ line graphs and other

graphics to help convey better than a table. Research is anonymous so users are likely to answer

more honestly in comparison to qualitative options like focus groups that are more interactive and

possibly has a name or ID attached to their result for further feedback.

Another common example of quantitative testing is a Likert scale; this survey type asks specific

questions that rank response levels to assess levels of satisfaction. This places a focus on variable

answers that are not directly Yes or No questions but rather a gradient of options (University, 2021).

As seen in Figure 8 - Likert Scale, the options are not phrased “Are you satisfied” but rather a rating

level, this allows for a wider range of results to more accurately measure the customer’s satisfaction.

Figure 8 - Likert Scale

Qualitative research is requesting an individual to answer a question with non-numerical data, this

is an opinionated evaluation to a given question which can be used to help further improve

development of a product or service from detailed user feedback. This data is harder to plot to on a

graph because categorising data which is alphabetical requires analysing unlike numerical data

which can be added quickly.

Qualitative examples include open questionaries that ask for detailed opinions on a topic, this can be

a question like “what did you like about your stay with us?” (Survey Monkey, n.d.), this allows for a

wider expression of opinion than a quantitative survey but is not as easily plottable as results must

be interpreted first.

Focus groups are also another option to qualitative research, this is gathering small groups to gather

and have a free-flowing discussion on the topic, this can give a researcher insight into areas that the

questionnaires may not cover and allows for further questions based on previous answers given

(Survey Monkey, n.d.).

Product testing is a research methodology that allows for collection of both quantitative and

qualitative data about the consumption, preferences or reaction to a product. By using this approach

quality assurance testing can be conducted and results can be compared against user opinions to

improve the product.

The research methodology chosen to test the artefact is a mixed approach of qualitative and

quantitative feedback through the product testing route. The aim of using product testing in this

project is to use data to identify and improve the AI to become more realistic. Questions will be

asked about any issues that have come up during testing and how the user would like the product to

be improved. The numerical data provided by the system will be provided to help analyse the AI

performance on a statistical level and identify tweaks that can be created to alter the product.

18

Gantt Chart
Figure 9 - Gantt Chart

Scope
The scope of the project, provided the student can keep to the schedule, should be completed to a

satisfactory level and will be achievable. The setup of the project is a large chunk of time due to base

project structure for AI setup is required and other accessory features need to be created such as

team states, perception and weapon setup.

The core scope of the project is limited to.

• AI movement in a cohesive manner focusing on formation-like movement with minimal errors,

this should be developed early on with iterations.

• Token firing systems focusing on difficulty scaling allowing for a director to tweak token

assignments balancing damage outputs based on the number of enemies in sight.

• System for agents to reach a safe location in cover based on position of enemies.

• Suitable testing environment for each test

Additional supportive features are planned such as visualisations for damage output values,

automatic test recording and animations to show AI state. This is achievable and should be

considered halfway through development to allow for the results to be used within testing.

Results and Findings
The Project criterion to determine if the created artefact is a success, is as follows:

• AI is capable of scaling damage based on a difficulty value (Easy, Medium, Hard)

• The AI can move through an environment using a formation like positioning

• The AI can correctly select cover in an environment

• The Director AI can move through an environment doing the above-mentioned criteria

fighting enemies without getting lost faster than the single agent solution.

19

Firing Tests

Test Method

The method used for testing firing damage output will be a listener actor recording how much

damage each unit receives as units fire at them, this value is then totalled and outputted as a float

value for total damage received. Each test lasts 10 seconds and continues from the previous test.

The 10 tests will last 1 minute 40 seconds. Every test will be conducted at the same time to allow for

quicker data collection and recording.

The difficulty for each test is set before to ensure correct values are outputted for each difficulty

group. The only failure condition for these tests is an anomalous result (which will be removed from

data set) or AI failing to fire at the target. In the event of a failure a note will be recorded and the

artefact tested again.

Baseline / Standalone Test Results

Figure 10 - Standalone Firing Tests

The standalone enemies are programmed without a token system in comparison to the director

system which guides how many hits an AI should have. The standalone AI defaults to a random

Boolean value for whether the AI should hit the target or not. This means the expected hit results

will be 50% of the total damage potential.

In the data collected, the more units in the world the greater the damage output is. The “1 to many”

tests has unintended results. Expected results should display that the AI miss enemies at the same

rate as the 1 to 1 test because the AI has the same Boolean hit potential, but the results show a

significantly higher damage output, almost twice as much. The reason for this outcome not aligning

with the 1-1 tests damage output is that the AI shoots to the left or right of the target, but it does

not account for If another target is in that offset location. This offset results in the AI hitting the

agent next to the target accidentally, this is an unintended effect of the system which requires

patching, this could be patched through recalculating the output vector or just nullifying the damage

if not the intended target.

The system keeps a consistent level of damage between all the “X to 1” tests. With an overall

damage average of 9.7Hp/s against a single target, the time to kill is around 10 seconds per AI.

20

Based on personal experience from multiplayer shooters, this is a very high time to kill (TTK)

regardless of game and this value should be adjusted to the game feel.

The “many to many” tests yielded an unexpectedly lower DPS than the “1 to many”, upon further

investigation it was shown that the group would opt to choose the target that was furthest left due

to the spawn order. This would create the effect of shooting to the left and hitting nothing whereas

in the 1 to many the AI would be shooting the centre target which would then hit the targets to

either side. Provided that AI were hitting the same targets its predicted that the results would be

similar.

Director Token System Tests

Figure 11 - Director Token Firing Tests

Director tests yield different results to the baseline tests; A Significant difference in DPS per person

in comparison to the average DPS per person in the standalone can be observed with the director

tests averaging is 50% less for the single target tests on easy. The trend displayed in the results of

the token system, is that the more people, the higher total damage the group provides. This is an

ideal result because a player should expect to receive more damage with a higher enemy count,

whereas the baseline tests show, the more AI targets there are the greater the damage output. This

result, whilst the potential to be logistically correct, does not provide an accurate result for testing

damage output values with targets that do not disappear.

The director tests show that each curve used for calculating when a token is assigned should be

adjusted to have a lower time to kill (TTK), all difficulties appear to have a very low DPS for a single

agent, it would take a single unit 35 seconds on easy to eliminate a target, this means that the token

curve needs to be improved to have a lower token threshold, this in turn would increase the damage

for a single unit.

The Token firing system can be seen to be more effective at changing the damage output when

there are more units to assign tokens to. On Medium (Excluding anomalous test result 10) the

average builds upon the damage from the easy difficulty and again for the Hard difficulty.

21

Movement Tests

Movement tests are conducted by timing an AI moving through 3 different sections of an

environment. A test will consist of 6 AI agents being controlled by either a director system or running

standalone behaviour trees. This is to test the effectiveness of group cohesion and how they can

navigate through obstacles.

Section 1 of the Movement tests is an open area which with an opening into the next section 20

Meters from point A, this is created to test formations in an open environment with no interference,

this also helps to see if an AI can manage basic cohesion without breaking formation, results here

are expected to maintain cohesion with no issues.

Section 2 of the movement tests is an enclosed area 22 meters long with a width of 2 Meters. This is

to simulate a corridor situation to test how a formation would mould to match the shape of the

room. Houses and other establishments that a SWAT team would have to enter will have elements

of tight area combat which makes having a correct formation important otherwise squad members

are potentially in danger. Results here are expected to potentially break by losing formation but

shape together quickly.

Section 3 of the Movement tests is an area that has obstacles designed to break a squad formation

by having obstacles in the way. The idea behind this section is that an environment like a house will

have tables, chairs and other items that will impede the movement of a team and could impede the

groups or an individual’s path.

There is only one failure condition for a movement test, if none of the AI agents in the team can

continue, then a failure is recorded.

If a lone AI stops moving and gets separated from the group or stops moving, the counter for

formation broken will be increased. The lower number of times the formation has been broken, it

would be fair to assume the better performing the AI cohesion is.

Another metric being recorded in movement tests is time. The AI navigates a full lap from point A to

B and then back to point A, upon reaching Point A, the time will be recorded. The test will run 3 Laps

in succession to get an average time which should help determine performance of each system.

22

Figure 12 - Movement Test Route

Figure 13 - Movement Test Results

Baseline tests

Unreal Engines default “Move to Location” node for AI movement is a quick solution to AI group

movement. This method yields results that are within an acceptable margin consisting of a moderate

error rate, averaging 3.4 errors every 27 seconds. In the baseline tests, a single AI would be stuck in

the middle of section 2 during the second lap, this would cause the stray agent to run from point B

back to point A faster than the rest of the group. This error drastically reduced the lap time of the

standalone tests and are considered somewhat unreliable. With the default Reciprocal Velocity

Obstacles avoidance (RVO), the AI can suitably move through the environment with minimal collision

in section 3. The AI do not have any structured formation which is clearly visible throughout the tests

which is undesirable for a working AI group.

Director Formation

The current implementation of the director formation system uses a mixed approach of Offset

vectors and EQS systems to generate a breadcrumb like path that the AI must follow. If the offset is

inside a collider of a static object (walls, obstacles), an EQS test is ran to find the nearest desired

pathfinding location.

The system results show that the time to complete the laps is slower than the other two tests by 2-3

seconds per lap. The reduced speed would have been an expected result of the formation system

23

needing to run different queries. The unintended result of the system is that the error rate is much

higher than both the Director location and the standalone AI movement systems. Out of the three

methods this is the least desirable result.

Director Location

Using an agent controlled by the Director AI, this system assigns other units the invisible controlled

pawn as the pathfinding location. This method manages the final location for each agent and

refreshes the path every behaviour tree refresh which allows for many corrective calculations. The

error rate of this system is the best of the three with an average error rate of 0.6 times every 3 laps

which is an improved result from standalone tests as errors are 5.6x less likely to occur.

The lap time despite not being the fastest is still close to the standalone test with a nominal

difference of about 1-3 seconds. The lap time is quick because there are not the positional

requirements like in the formation system which is an alternative effect of the system but still looks

cohesive due to the AI still navigating close to one another.

Cover Tests

The Cover tests consist of an enemy appearing in random locations near the AI group and the agents

solving a location to stand at using an EQS query. The time for all agents to reach the desired

location will be recorded as well as the effectiveness of the cover. This is determined by the

proportion of limbs sticking out, if the limb would be hit easily then it would add to the failure

counter.

Note* This test was removed due to the time constraints of the project, the cover system query is

generated but not included in the final product.

Environment Tests

The Environment tests consist of 5 group agents navigating through a simulated environment, this

environment is not based on real-life structures but has elements to help test the AI in different

ways.

Initially the fork in the road is to test which AI the group should move to eliminate. The intended

result is the closest to the agent, this is so that the environment is cleared from front to back.

Next is a sightline test, an AI is placed in the distance with another AI closer to the group behind a

wall, this requires the group to choose between navigating towards the closest target or shooting at

the currently visible target. The Intended result is for the sightline test is to choose the closest target

that is visible.

And finally, there is a section with multiple AI targets to test the cohesion of the group firing skills, if

the AI do not cohesively shoot at the same target, then the test gets an error added to the wrong

target counter. Each failure is on a per agent basis which means if 4 AI are shooting at the wrong

target +4 is added to the error total.

24

Figure 14 - Environment Test Results

Director Location

In results for the director location, the simulation was tested 3 times on each difficulty. In the

current implementation the trend (from non-failure results) that occurs is that with difficulty, the

time to complete decreases, this is because the damage output is higher allowing for the AI to clear

rooms faster. In the projects current implementation, the combined features fail on the Hard

difficulty. This data set consistently errored which rendered the results as a failure. During

observation of the Director system and through debugging the behaviour tree, it was discovered the

AI would get stuck choosing between states despite having information to transition into a state this

left the director unable to move to the next location. This means that the director location system is

a partial failure because it cannot fully adapt to the dynamic difficulty and requires further patching

to get more consistent working results.

Director Formation & Standalone Tests

The director formation has consistent failure with the group of agents during testing stopping at

targets with no clear reasoning, this unwanted behaviour and comes from a direct logic failure

rather than a methodology failure and thus renders the test results defunct. Additional iterations

require more defined decision to produce effective results.

The Standalone tests are erroneous for a different reason to the Director Formation results. AI

cannot distinguish between team and enemy when searching for a new target despite explicitly

filtering the characters by team, this problem results in any ai groups larger than 2 from seeking to a

single target. This fault in the system prevents the AI tests from being conducted the same as the

director making testing an impossibility and requires a core foundation for enemy detection.

25

Discussion and Analysis
The investigation into AI Director systems and supporting AI techniques demonstrates success in a

small range of techniques that an AI Director system can be used to manage agents cohesively and

effectively. The system overall was unable to perform and meet the objectives of this project, with

the objective of hazard perception being removed from scope due to time constraints and others

not fully meeting success criterion. Although the project was a failure the literature researched

allows for an in depth understanding of techniques and how to improve upon the system created

with potential for use as a framework in other projects.

Some AI programming techniques proved effective whilst others may not have been the correct

choice for the system where another could have been used to get more consistent results.

AI Perception systems prove effective in targeting enemy players successfully providing a result that

an entity can use to fire at. This system was effective for perceiving stimuli based on team data but

with the current implementation has some flaws on the decision making from the information

provided, notably by assigning targets based on incoming information. The current implementation

could be improved by checking the currently active stimuli when receiving a new stimulus, this

allows for the target chosen to be assigned for the agent receiving based on information around.

Alternatively, a Utility Based AI decision approach may be used to determine the desired target.

Both solutions implemented correctly would create a reactive AI that can respond to new threats

quicker.

Using Token Systems to manage the damage output of a group AI has proven to be an effective

method. The token system meets the success criterion, adapting to changing difficulty based on a

factor, in this instance it was the difficulty of the game. (Barriales, 2017) in his token system design

does not detail on how the system they implemented is calculated for providing a token, but with an

introspective into how games should balance this implementation calculates currently enemies

perceived against those perceiving and uses the difficulty value against a curve to calculate how

many shots need to be fired before a hit can be granted. Though this evaluation works a separate

evaluation of time elapsed, or damage dealt could be used to balance the system which may work

better for a dynamic scaling system.

Behaviour trees are a core component in the project and were the primary driving force behind the

controlled agents, this was chosen so that both non directed and directed AI could use the same

behaviour tree and have a comparison to show the effectiveness of the director. Behaviour trees

proved to be effective as a method for decision making in AI, but the inefficient use of behaviour

trees result in the artefact cause AI to break and no longer move. A state-machine like structure is

implemented within the behaviour tree which has hindered the scalability that the behaviour tree

system is designed for as described by (Yannakakis, 2018).

Within this behaviour tree system the results show that the AI breaks frequently because the state

gets stuck, this is an issue with state machines rather than the behaviour tree. State machines

require specific conditions to transition which the project failed to meet, this could have been

improved by increasing code quality and patching out bugs that prevent transitioning.

Environment Query systems, although an ineffective use in the formation system, have proved some

potential in use for other systems untested such as the intended cover system. The creation of the

cover system was completed but not implemented due to time constraints. As shown in Figure 14 -

Environment Test Resultsand Figure 15 - Custom EQS Generator, the generated locations from the AI

could be used to mark locations for the AI to stand. Once additional context is added to the scene

26

such as agent location and other enemies this could change results and a utility-based system for

cover may be a better fit.

Figure 15 - Custom EQS Generator

Figure 16 - Cone EQS Generator

Critical Evaluation

In this project the student has over-scoped and managed their time insufficiently, this led to delays

and falling behind schedule which affected the success of the project. Due to personal reasons the

student also was unable to work on the artefact as much as they wished resulting in a scale back of

the artefact to an unsatisfactory standard. Had the student created contingency plans, the artefact

and testing could have been more in depth focussing on a core component of AI cohesion such as

the movement or the token system rather than a broad range of AI concepts.

With a single core focus, time and resources would not have been spread thin resulting in an artefact

with insufficient results. Despite the artefact not producing the desired results, effort to implement

a structure that can be further developed in the future has been created using the type object

pattern and readable code which allows for new systems to be easily implemented.

The testing provided has no little depth beyond surface results as very few tests have been

conducted per feature, key test variables such as movement speed or weapon damage were not

altered to create a wider range of results. In addition to the limited results provided, the results

were not iterated upon which could have potentially yielded different results. The weapon firing

tests could have been created as a dynamically adjusted feature by implementing a scale that the

user could have dragged using a UI element to adjust the damage. The knowledge gained through

these limited results does allow for further development opportunities for ways to balance AI and

27

token systems. Token systems notably will be useful for other systems in different game mechanics

such as AI spawning or movement opportunities for an RTS game.

Given the chance to improve the project, other implementations such as steering behaviours mixed

with a pathfinding approach could be tested as an extra result. This may help with the formation

issues that the Director has currently whilst still pathfinding towards a point, alternatively a better

formation system without an EQS may be best due to the errors present in the current

implementation, further development is required.

The Artefact has limited user interaction which has not proved anything for a player versus AI

interaction like stated in objective four “How can group AI be balanced for a player?” but does

include situations against AI to mimic what competing against the system would look like. Testing

against AI doesn’t give a good benchmark for how players would react due to the critical thinking

skills that humans possess unlike AI which follow pre-programmed rules, this is why player testing

should be a focus if development of the artefact continues.

The research methodology chosen would have been an excellent way to improve the artefact

allowing for feedback to iterate and gathering plottable data that would have been used to optimise

the systems given enough time and better management strategies. In the results a pure quantitative

approach was used and tested based on the programmer’s view which does not allow for a refined

product, tests should have been conducted using other people. Additionally, the notes from the

programmer should have been recorded so that the iterative process is displayed, and development

results can be displayed.

28

Conclusion
The project failed to work cohesively when implemented and did not meet the success criteria for

the solution provided due to poor time management and issues within the artefact. However, with

gained insight on various AI technologies, it is believed that with more time and a shifted focus into

optimising decision-making code structure, most problems could be resolved to provide more

accurate results. Individual components of the project show that the use of a director system could

be used to manage some aspects of AI cohesion for weapon systems and navigation of many agents

but were unable to complete the task as intended due to errors in the artefact.

Through development and research of the project a wide variety of AI technologies have been

discovered and new interests found such as Machine Learning within video games. Overall, a greater

understanding of AI technologies and the difficulties faced when creating in depth systems gives a

new perspective into AI programming, with a desire to continue developing, refining skills and to

create a robust AI with a potential to further a career in this area. This project has added more than

just AI knowledge to my skillset but also has shown me areas for improvement in life when it comes

to time and resource management and to look at problems through more than one solution.

If this project was repeated a focus on EQS systems to gather information about the environment

would be a key element of research and development because of the potential it can provide for AI

decision making. This would allow the intended objective of real-time hazard perception to be

compared to a stimuli perception system and test results against the EQS which could make for

interesting optimisations.

Additionally, in recreation of the project, using the ‘Lyra’ template from unreal engine to start as a

solid point for basic AI handling would be wise, because the setup of the project took longer than

necessary drawing time away from crucial development of AI systems and this template provides

that base.

29

Bibliography
Aggarwal, L., 2024. AI vs. Machine Learning vs. Deep Learning vs. Neural Networks | IBM. s.l.:IBM.

Anon., 2024. Mario Kart 8 item probability distributions. [Online]

Available at: https://www.mariowiki.com/Mario_Kart_8_item_probability_distributions

[Accessed 11 December 2024].

Barriales, S. O., 2017. Using Your Combat AI Accuracy to Balance Difficulty. Game AI Pro 3.

Brown, S., 2021. Machine Learning, Explained | MIT Sloan. [Online]

Available at: https://mitsloan.mit.edu/ideas-made-to-matter/machine-learning-explained

[Accessed 12 November 2024].

Chin Hiong Tan, K. C. T. A. T., 2011. Dynamic Game Difficulty Scaling Using Adaptive Behaviour-Based

AI. s.l.:IEEE.

Codemasters, 2010. F1. s.l.:Codemasters.

Coenen, S., 2016. Steering Behaviours in C# and C++. s.l.:s.n.

Cole Stryker, Eda Kavlakoglu, 2024. What is Artificial Intelligence (AI)? | IBM. [Online]

Available at: https://www.ibm.com/topics/artificial-intelligence

[Accessed 12 November 2024].

Dill, K., 2015. Dual Utility Reasoning. Game AI Pro 2 : Collected Wisdom of Game AI Professionals, pp.

23-26.

Dyckhoff, M., 2015. Human Enemy AI in The Last of Us. Game AI Pro 2: Collected Wisdom of Game AI

Professionals, pp. 431-442.

Epic Games, 2024. AI Perception in Unreal Engine | Unreal Engine 5.5 Documentation | Epic

Developer Community. [Online]

Available at: https://dev.epicgames.com/documentation/en-us/unreal-engine/ai-perception-in-

unreal-engine

[Accessed 11 November 2024].

Epic Games, 2024. Environment Query System. [Online]

Available at: https://dev.epicgames.com/documentation/en-us/unreal-engine/environment-query-

system-overview-in-unreal-engine

Fray, A., 2013. Context Steering - Behavior-Driven Steering at the Macro Scale. Game AI Pro 2 :

Collected Wisdom of Game AI Professionals, pp. 183-193.

Ghost Ship Games, 2018. Deep Rock Galactic. s.l.:Coffee Stain Studios.

Ghost Ship Games, 2024. Difficulty Scaling - Official Deep Rock Galactic Wiki. [Online]

Available at: https://deeprockgalactic.wiki.gg/wiki/Difficulty_Scaling

Giovannetti, A., 2019. 'Slay the Spire': Metrics Driven Design and Balance. s.l.:GDC Vault.

Haapanen, L., 2021. The Environment Query System and the Spatial Query System used for AI-agency

in games, a comparison, s.l.: University of Jyväskylä.

IBM, 2024. AI vs Machine Learning vs Deep Learning vs Neural Networks | IBM. [Online]

Available at: https://www.ibm.com/think/topics/ai-vs-machine-learning-vs-deep-learning-vs-neural-

30

networks

[Accessed 12 November 2024].

IBM, 2024. What is a Neural Network? | IBM. [Online]

Available at: https://www.ibm.com/topics/neural-networks

[Accessed 12 November 2024].

IBM, 2024. What is Machine Learning (ML) | IBM. [Online]

Available at: https://www.ibm.com/topics/machine-learning

[Accessed 12 November 2024].

jb-dev, 2018. Steering behaviours: seeking and arriving. [Online]

Available at: https://www.gamedev.net/blogs/entry/2264855-steering-behaviors-seeking-and-

arriving/

Jim Holdsworth, M. S., 2024. What is Deep Learning. [Online]

Available at: https://www.ibm.com/topics/deep-learning

[Accessed 12 November 2024].

Nintendo, 2024. Mario Kart 8 Deluxe for Nintendo Switch - Official Site. [Online]

Available at: https://mariokart8.nintendo.com/

[Accessed 11 December 2024].

Reynolds, C. W., 1999. Steering Behaviors For Autonomous Characters, s.l.: s.n.

Roberts, P., 2023. Artificial intelligence in games. Florida: Boca Raton.

Su Xue, M. W. K. A. A. Z., 2016. Game Design Document Format For Video Games With Passive

Dynamic Difficulty Adjustment. Register Jurnal Ilmiah Teknologi Sistem Informasi.

Survey Monkey, n.d. Qualitative Survey Types. [Online]

Available at: https://uk.surveymonkey.com/mp/conducting-qualitative-research/

[Accessed 20 February 2025].

Świechowski, M., 2024. Fuzzy Utility AI for Handling Uncertainty in Video. s.l.:IEEE.

Thompson, T., 2016. AI and Games - YouTube. [Online]

Available at: https://www.youtube.com/@AIandGames

Ubisoft, 2020. Trackmania. s.l.:Ubisoft.

University, J. M., 2021. Guidelines for Likert Survey Questions, s.l.: James Maddison University.

Walsh, M., 2015. Modeling Perception and Awareness in Tom Clancy's Splinter Cell Blacklist. Game

AI Pro 2 : Collected Wisdom of Game AI Professionals, pp. 313-326.

Xiao Cui, H. S., 2011. A*-based Pathfinding in Modern Computer Games. IJCSNS International Journal

of Computer Science and Network Security, p. 2.

Yannakakis, G. N., 2018. Artificial Intelligence and Games. s.l.:s.n.

Yosh, 2023. Training an unbeatable AI in trackmania. s.l.:s.n.

Zielinski, M., 2013. Asking the Environment Smart Questions. Game AI Pro, pp. 423-426.

31

Appendices
No appendices to date.

Appendix 1: Gantt Chart

Appendix 2: Title

