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Environment Query System 

Abstract 
AI systems within games often lack in depth and cohesion which leads to predictable behaviours and 

no meaningful difficulty scaling. This project explores several key components of Artificial 

Intelligence using technologies for group behaviour. It examines algorithms used to optimise 

locomotion using pathfinding and steering behaviours and evaluates decision making models for 

effective AI behaviour. Additionally, the study considers the role of token systems to manage 

weapon firing and how this system could be used to dynamically scale difficulty of an AI. Whilst 

promising results were observed in some areas, further research is necessary to reach conclusive 

outcomes and refine the solution. 

Introduction  
What is the reasoning behind this project? 

With an interest in artificial intelligence (AI), and a fan of First-person shooters, a focus to research 

and investigate methods that incorporate AI in a director system to better the understanding in AI 

and practice techniques to improve AI programming skillset. 

Why is an AI Director system the focus of this study? 

This specific interest for an AI Director to manage artificial intelligence was inspired by the game 

Alien Isolation, which uses a dual AI controller to provide a thrilling experience. This project is to try 

to create and expand a director system into a multi agent system allowing for dynamic game 

balance. 

Aim 
What does this study hope to achieve? 

The aim of this project is to create an AI Director system that controls a group of AI in a SWAT team 
through a combat environment. 
The AI group must detect and overcome hazards within the level as they appear, hazards will 
present themselves as traps and enemies. The AI will respond to these hazards with the appropriate 
actions as managed from the “Director” AI 

Objectives 
• How can a director manage agents to act cohesively in movement and interactions?  

• How can an AI be created to respond to Hazards in real-time?  

• How can difficulty be scaled for an AI? 

• How can group AI be balanced for a player? 

Literature Review 

How can a director manage agents to act cohesively in movement and interactions?  
How can AI travel as a group? 

Steering Behaviours 

“Steering behaviours are an amalgam of different behaviours that are used to organically manage 

the movement of an AI agent.”, usually on a 2D Plane due to behaviours being easier to implement 

(jb-dev, 2018).  

A steering behaviour system works with child behaviours calculating a vector representing how that 
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behaviour would like the agent to move. The result of all vectors combined produce a final desired 

velocity that the agent will steer towards (Fray, 2013).  

Common steering behaviours include: 

Seek & Flee 

A force acting to steer the agent towards a location, the behaviour adjusts the agent so that the 

agent’s velocity is radially aligned towards the target (Reynolds, 1999). Calculating a seek vector is 

simple, subtract the current position from the seek target, this results in a desired vector towards 

the target. 

Flee is the opposite behaviour of seeking calculating a force to move the agent away, this is 

calculation is simple as subtracting the flee target from the current agent’s position (Coenen, 2016). 

Pursuit & Evade 

Pursuit and evade are very alike to their base function of seek and flee except for the fact these 

behaviours use the targets velocity to predict where the target should be (Coenen, 2016). This is 

calculated by getting the desired velocity like flee and seek. Then the distance and targets current 

velocity is multiplied together and added to the targets location resulting in the agents desired 

vector to flee or seek. 

Arrival 

The arrival behaviour is the idea of an agent that will gradually slow down until it reaches its 

destination. When the behaviour is active the distance between the target and the current position 

of the agent and will change its maximum move speed accordingly (jb-dev, 2018). 

Wander 

Wander is often used in games when the agent does not have a task to complete and awaits an 

action. Simple options include picking a random position and seek towards that position, but this 

results in unrealistic behaviour. A better implementation is having a circle projected in a set distance 

away matching the velocity of the agent. This circle can then have a random radial direction from the 

central point on the circle which acts as a displacement from that location to seek to. This is updated 

each frame with slight adjustments to the random radial direction by subtracting or adding small 

increments (Coenen, 2016). 

Collision Avoidance 

Unaligned collision avoidance behaviour attempts to stop agents moving in arbitrary directions from 

colliding. To implement this an agent needs to consider other agents velocities and determines when 

the two will make their nearest approach. If a potential collision will occur then the two agents will 

steer to turn away from the potential collision (Reynolds, 1999).  

Separation 

Separation behaviour gives the agent the ability to maintain a distance from other agents within its 

vicinity, this can be used to prevent agents from crowding together. To calculate separation of 

agents a radial search is done to find the other agents that it would separate from, the flee method 

is invoked for each position of those found agents, added together and normalised to find the final 

steering direction (Reynolds, 1999). 

Cohesion 

Cohesion behaviour gives an agent the ability to form a group with other agents, this is a similar 

calculation to the separation behaviour but inversed so agents are all seeking towards a point 
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determined by the averaged position (Reynolds, 1999). 

 

Whilst steering behaviour locomotion is quick to calculate, “steering behaviours will not navigate 

through a complex environment.” (Roberts, 2023) This error could be seen in the racing genre when 

using the flock behaviours to race the AI cars as seen in the F1 game (Codemasters, 2010). Often 

small movements from the player could cause immersion breaking results which led to missed 

overtaking opportunities, poor overtake blocking and sometimes even collisions (Fray, 2013). 

Pathfinding 

Pathfinding is the process of finding the shortest route between two end points (Xiao Cui, 2011). 

Many algorithms deal with this problem such as A*, Dijkstra and JPS. In a game it is important for a 

pathfinding algorithm to remain somewhat realistic, that is why the AI must calculate the path 

quickly and generate a path that is reasonable to the player. (Roberts, 2023, p. 91) 

Generating a path quickly is imperative for games because no other game system will be able to run 

whilst the pathfinding algorithm is running which will cause lag spikes and frame drops, this effect 

when calculating paths can be mitigated by calculating the process over several frames to allow 

other systems to run their processes. The drawback of calculating over several frames is a reduction 

in perceived intelligence as the AI will have minimal action whilst waiting for the calculation to finish. 

To further minimise this behaviour of standing still, shorter paths can be created which follow the 

rough path whilst the AI is travelling. This way the AI will have the next path ready by the time it 

reaches its current pathfinding destination. (Roberts, 2023, pp. 91-94) 

 

Spatial Representation – Pathfinding Subheading 

 

Spatial representation is the process of graphing a space into mathematical equations that can be 

later used by pathfinding algorithms to find the quickest route to the desired location. Representing 

the space mathematically is possible in multiple ways, but the core approaches focus on Grid Based, 

Waypoint and NavMesh. 

 

Grid Based involves breaking down the navigable area into cells to explore, when calculating a path 

each cell has a value and once the target location is found the shortest path is calculated by working 

through nodes with the smallest value. This method of representation works for small simple areas, 

but on a larger scale calculation increases due to the volume of cells that would need a path 

calculating.  

Waypoint search requires nodes in the world that can selected, the AI is then able to jump navigate 

between these nodes similar to the grid-based approach.  

Waypoint nodes require hand placement but could be generated through the use of a tool. Although 

this approach is good for large complex environments, it lacks the ability to navigate to anywhere 

between those waypoints which is not reasonable for believable game AI.  

NavMesh spatial representation requires existing points similar to the waypoint method, more 

nodes are required initially due to the mesh needing outer nodes to link to form polygons. 

As the polygons generate, unnecessary nodes are removed, and a node is created in the centre of 

the polygon which acts just like the waypoint method. By allowing for traversal between the nodes, 

this works well for user curated levels due to the adaptability of the algorithm.  
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Among pathfinding algorithms, A* is the most used (Roberts, 2023, p. 91). Popular game Engines 

such as Unreal Engine and Unity both use A* for their AI systems with a NavMesh to reduce 

pathfinding calculation time whilst maintaining realistic pathing. 

 

How can AI find information about the world?  

AI can obtain information about the world using few methods that mimic human levels of 

perception. Frequently used methods include perception and Environmental Query Systems (EQS) or 

custom trace systems.  

Perception 

As games progress to include increasingly advanced AI, perception awareness models have become 

common for AI systems. Perception systems are used to mimic human primary senses and prompt 

decisions from the data obtained by the artificial senses. This data can aid in creating a believable AI 

that only knows information from the perspective of the agent.  

Visual perception models in games commonly use a cone to model what an NPC can see in front of 

them but lacks in modelling other aspects such as peripheral and distanced vision (Walsh, 2015, p. 

314).  

 

Distanced vision from a cone model is inaccurate because as the cone distance increases so does the 

search radius which suggests that the ai will perceive objects more laterally the further away 

something is. This problem can be reduced by using a box view (a cuboid shaped collider) to detect 

primary vision instead of a cone, this is due to the box not having an increased size as it gets further 

away.  

 

In the game ‘Tom Clancy’s Splinter Cell Blacklist’ the solution was to use a coffin shaped collider to --

--allow for peripheral and primary vision, this collider would expand outwards to a point like a cone 

to create the peripheral blindness and then contract as the collider gets further away from the NPC 

which reduces the lateral visibility (Walsh, 2015, pp. 314-316). 

 

Figure 1 Coffin Collider 
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Auditory perception, another key sense often used in games, is used to create an additional layer of 

behavioural intelligence to an AI.  

 

Creating an audio event for an AI to hear is easy, but the calculation of hearing distance is not as 

simple. Checking the Euclidean distance from the noise source to the agent like it would be for sight 

would not be effective, because an AI could hear through walls using that method (Walsh, 2015, p. 

320).  

 

A solution is to calculate an area path that the sound would travel to the agent, this is done by 

getting the closest route to the doors leading to the player and calculating the length of the vectors 

as seen in Figure 2 – Area path & Euclidean Distance Representation 

 

Figure 2 – Area path & Euclidean Distance Representation 

Unreal Engine has a specialised AI perception system which uses artificial senses to obtain 

information about the environment, these senses search for actors that can return a positive value 

based on a sense configuration. Sense configurations allow for different detection methods such as 

sight, hearing, damage and touch. Stimuli data returns an actor which information such as location, 

owner or team can be returned. As an AI receives stimuli information, it filters data and stores any 

relevant information for decision making. (Epic Games, 2024) 

 

Environment Queries 

Environment queries can used to get information about the world through a variety of traces and 

collision tests. These tests are used for making simple decisions such as choosing between health or 

ammo pickups, enemy threat analysis and distance from player. A Query has three main 

components: 

• Context Object: a game entity that is querying the environment. This is crucial as the entity will 

be able to ask if locations are visible from its current location or if they were in range of an 

object. 

• Query Template Id, which question is it that we are asking the entity to run.  
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• Items: An array of items returned in the test. This list can be filtered by items failing further 

query tests 

(Zielinski, 2013). 

 

Unreal Engine has their own system to handle this called EQS (Environment Query System) which 

allows for these tests to be ran in tandem with their behaviour tree systems (Epic Games, 2024). 

In the Unreal Engine EQS workflow, a generator node is required to state the sample locations from 

which the system will collect data. This generator is supplied with an object’s position and will act as 

the reference point for the tests conducted. The best fed option(s) are returned as the result of the 

query (Haapanen, 2021, p. 11).  

The Flexibility of EQS allows for tweaking the logic of a query and their attributes easily but requires 

a complex approach for creating custom generators which will slow down development iterations 

due to the increased workload. 

Whilst the iteration process is fast for non-custom generated queries the system is limited by the 

amount of unnecessary data produced by empty generated points which each need to be weighed 

and tested against the queries. (Haapanen, 2021, pp. 40-41) 

How can an AI be created to respond to Hazards in real-time?  
What types of real-time decision-making methods are there? 

Realtime decision making is critical for games because players actions will affect how the AI should 

respond. There are a few common decision-making models that are widely used within gaming that 

allow a range of simple to complex actions varying in complexity to implement.  

State Machines (Finite State Machines & Fuzzy State Machines) 

Finite State machines (FSM) are solutions to managing how an AI can act, typically used in simple or 

early models of AI (Roberts, 2023). Only one state can be active at a time, these states are comprised 

of actions that need to be followed, for example an explore state would contain an action to move 

randomly and seek opponents (Yannakakis, 2018, p. 33).  

A limited number of behaviours are programmed into the AI which are selected that allow 

transitions between each state. Dependant on use, states are capable of transitioning between a 

single or multiple others dependant on the required exit condition to transition. Pac Man is a good 

example of this with two exit conditions from the evade state as seen in Figure 3 – Pacman State 

Diagram. If the power pellet is not active or the ghost has been eaten, the ghost will transition from 

the state out into a chase mode or return home. 
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Figure 3 – Pacman State Diagram 

FSMs are limited in complexity due to the use of the same conditions which allow for the state 

swapping, this can potentially break the emersion for a player if they spot the pattern. Another 

drawback is that the AI will only be in a single state at any time. (Roberts, 2023) Another issue is 

state thrashing, The AI could swap between two states with opposing actions repeatedly which gives 

the appearance of becoming stuck.  

Fuzzy State Machines (FuSM) help solve the issue of single states that FSMs have by implementing 

available states that can be partially triggered, this means that an agent could have 40% towards 

state 1, and 60% towards state 2, these are fuzzy sets. Fuzzy sets allow for membership to be 

calculated towards a state to have a partial output. Instead of having set value ranges we can assess 

the membership based on a graph, this will allow for membership scaling to target different 

behaviours together with different activation points in the same query which will reduce the number 

of conditional statements that a FSM has.  (Roberts, 2023, pp. 155-159) 

This mixing of states allows for layer of complexity and unpredictable behaviour compared to the 

state machines but will also have a higher calculation cost due to the requirement of calculating 

every state contribution anytime the states are evaluated.  

 

Behaviour Trees 

A Behaviour tree is a knowledge system similar to an FSM. BT’s due to their transitions between 

behaviours, “the strength of BT’s compared to FSMs is their modularity”. (Yannakakis, 2018, pp. 34-

35) 

BT uses a tree structure with a root node and branching child nodes which represent behaviours. 

Executing a behaviour tree starts with the root and sequentially executing parent-child pairs. 

Dependant on the type of composite node a child will return a value of failure or success. 

Sequence Nodes will execute all the children until one fails, if one child fails the sequence is aborted 

and returns a fail. 

A Selector will execute a node on a condition, if there is no condition the selector will try to find a 

child that succeeds then return the success result. 
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Decorators will enhance the complexity of a single child behaviour, this can be improved through a 

select number of times to execute or a set time for the task to be completed. This will return the 

condition of the task. 

In addition to failure and success states a tick state will continue execution until a result state is 

returned, the branch execution will not proceed until this has finished. This is useful for nodes that 

require a pathfinding to be completed first. 

In comparison to FSMs, BTs are more flexible to design and easier to test but suffer from low 

dynamicity due to being a static knowledge representation (Yannakakis, 2018, p. 37). 

Utility-Based AI 

Utility Based AI, a popular decision-making method, removing the modularity limitations of BTs and 

FSMs by implementing an ad-hoc style of behaviour authoring (Yannakakis, 2018, p. 37). This 

approach to AI is less popular in academia than in the game industry because Utility AI is primarily a 

design-based technique (Świechowski, 2024, p. 1).  

The design of a Utility based System follows a similar method as a FuSM with its membership 

functions and fuzzy sets.  

The data measured in this system can be anything from an observable object (e.g., health, ammo) to 

subjective data such as emotions, mood and threat (Yannakakis, 2018, p. 37). The fuzzy sets allow 

for linear or non-linear formulas to be evaluated every n frames which make a decision based on the 

aggregated utility value of each function. Whilst BTs and FSMs only evaluate one decision at a time, 

Utility Based AI architectures will examine all options and assign a utility. Once all utilities have been 

assigned the highest utility value will be selected (Yannakakis, 2018, p. 37). 

It is critical that for utility based AI should not be assigned fixed weights as it would take away the 

responsiveness and dynamicity of the system at runtime (Dill, 2015, pp. 23-24). 

The advantage of Utility Based AI is that it better handles the different options where more than one 

action could be taken. Additionally, behaviour can be manually tailored by changing the heuristic 

functions of each utility which allows for designers to maintain more control over the behaviour that 

the AI will have (Dill, 2015). 

A drawback for Utility AI is having no built-in mechanisms for handling uncertainty, this could be 

seen in games such as poker where the data in the hand is known but everything else is unknown 

(Świechowski, 2024, p. 1). 

 

 

Neural Networks, Machine Learning & Deep Learning 

 

Recently AI Researchers focus on breakthroughs in generative AI, a type of AI that creates new 

media such as text, audio and controversially images/video. Machine learning (ML) is a large part of 

this debate with lots of different techniques, but one of the most important learning algorithms is a 

Neural network (Cole Stryker, Eda Kavlakoglu, 2024). 

Neural Networks 

(Artificial) Neural Networks (ANNs) are a biological inspired approach for intelligence and machine 

learning which use neurons, (also referred to as nodes) to process information. (Yannakakis, 2018, p. 

59). Every ANN involves layers of nodes, an input layer, one or more hidden layers, and an output 

layer (IBM, 2024).  
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Each layer accepts inputs from the prior layer, modifying it with built in weights before passing it 

through an activation function. The output from that function is then passed forward to the next 

layer, and the process repeats until the output layer is reached (Roberts, 2023, p. 264). 

Machine Learning 

Machine learning (ML) is a subset of AI that gives computers the ability to learn without being 

explicitly programmed. ML is defined as the capability of a machine to imitate intelligent human 

behaviour through and perform tasks in a way similar to how humans solve problems (Brown, 2021). 

Within ML three main learning methods exist. Supervised, Unsupervised and Reinforcement 

Learning (IBM, 2024). 

Supervised Learning is defined by the use of labelled datasets to train the algorithm to classify data 

and predict outcomes. As data is given to the model it adjusts the weights of the neurons until it 

provides an accurate result. This method is used for classification of spam emails in the real world 

and is used at scale (IBM, 2024). 

Unsupervised Learning is providing the model with unlabelled data to find patterns or trends that a 

human may not be looking for, such as sales correlation between demographics (Brown, 2021). 

Benefits of this approach is that the model does not require monitoring to correctly identify 

information (IBM, 2024). 

Reinforcement Learning is an approach similar to how humans learn using positive and negative 

reinforcement for actions. In reinforcement learning samples of positive results are usually not 

available which makes the process similar to trial and error as to find the correct result (Yannakakis, 

2018). 

Deep Learning 

“Deep Learning is a further subset within Machine Learning and is often thought of as scalable 

machine learning because it automates a lot of the feature extraction process and eliminates some 

of the human intervention involved. “ (Aggarwal, 2024) 

Deep Neural Networks (DNN) are similar to ANN with each layer building on the previous to optimise 

and predict by passing data forward, this method is called forward propagation (Jim Holdsworth, 

2024). It is considered that a Neural Network is actually a DNN when it is comprised of three or more 

layers and outputs (IBM, 2024). Typically, within DNN, hundreds or thousands of layers are used to 

train the models (Jim Holdsworth, 2024).  

With DL a large amount of computing power is required due to the volume of calculations that the 

Neural Network needs to complete. Graphical Processing Units (GPUs) are ideal for this due to the 

large volume of calculations and multiple cores with surplus memory available (Jim Holdsworth, 

2024). 

In comparison to ML where supervised learning models require structured data, DL models are 

capable of unsupervised learning by extracting characteristics, features and relationships that allow 

for accurate outputs using raw data (Jim Holdsworth, 2024).  

Uses of Machine Learning and Deep Learning in Games 

ANNs are also applicable to games by teaching an AI to play a game. 

YouTuber Yosh, has a series wherein he attempts to use ML with the reinforcement model to train 

an AI to play Trackmania (Ubisoft, 2020). In his project he sets a time for the AI to compete with on a 

snaking track with no side barriers set by an experienced player. The AI learned using a 

reinforcement learning strategy and actions assigned a point value on success. After hundreds of 

attempts and at least 75 hours of learning, the AI beat the drivers time as seen in Figure 4 - Yosh 
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Trackmania Learning Time Graph. As training time increased, with 400+ hours of learning the AI 

were capable of beating the goal time by 7 seconds, this makes beating the AI time on the same 

track as a human near impossible (Yosh, 2023). 

Figure 4 - Yosh Trackmania Learning Time Graph 

 

The problem with the AI using ML is that even after 500 hours of training the AI was incapable of 

consistently producing results that the driving route on other maps. “The AI was less precise; it 

makes more mistakes and sometimes gets completely confused” (Yosh, 2023, p. 11:15). 

Games using ANNs/MLs is not ideal because it slows developers adding new AI features in post 

launch updates, due to the AI will have to be partially or fully retrained to learn the new behaviour. 

In addition to the time it takes to train, “results can be unpredictable, which goes against the idea of 

games being an authored experience” (Roberts, 2023, p. 279). 

 

The use of ANNs is to create repetitive tests trying different values for weights for each neuron to 

get the AI to ‘learn’ how to behave. This method of AI Decision making requires a lot of training to 

get an accurate result due to the iterative design in the learning, each test is given a rating on result 

desirability and the most successful result is used as a baseline for the next test. Once the AI is fully 

trained it should be able to work in the environment it was trained in accurately (Roberts, 2023, pp. 

273-274). The drawback of ANNs using reinforcement learning is that procedural systems will need a 

longer model training time to be accurately trained due to the environment changing often. This 

means that an AI will have to learn the patterns of the environment generation as well as the best 

actions to take from within the environment which will inflate training time. 

How can difficulty be scaled for an AI? 
A game experience is considered satisfying or entertaining when it is difficult to beat, which may be 
true for a large portion of experienced gamers but when it comes to the casual market, The game is 
most entertaining when it is challenging yet beatable (Chin Hiong Tan, 2011). By having a game AI 
scale difficulty to match the performance of a player a game could be made for players of all skill 
levels. 
To make games more difficult a developer can increase difficulty by making enemies more 
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aggressive or giving them more powerful weapons, additionally they can spawn more enemies or 
reduce player pickups. (Barriales, 2017) 

Value Scaling 

When scaling AI Difficulty, tweaking values is a useful way to quickly affect change as they would be 
readily available and will not require adding behaviour which will take longer to program. Many 
games tweak values between difficulties but a game that handles value tweaking well is Deep Rock 
Galactic (DRG) (Ghost Ship Games, 2018).  
In DRG there are 5 hazard levels which act as difficulties. Hazard 1 is the easiest, and 5 the hardest 
difficulty. Each difficulty scales differently based on how many players are in the lobby. When it 
comes to scaling there are both player and enemy values to consider.  
To scale DRG difficulty simple metrics such as attack speed, movement speed and damage are 
tweaked on the AI end which causes them to become far more difficult to overcome (Ghost Ship 
Games, 2024). As seen in Figure 5 - Deep Rock galactic Difficulties Chart, enemies become much 
harder to kill from their increased stats like damage, attack speed and movement speed. This small 
tweak creates a large change in the game feel because the survivability of the player decreases when 
paired with the rank and the number of enemies increasing.  

Figure 5 - Deep Rock galactic Difficulties Chart 

 
 

 

Behaviour Frequency – Combat Accuracy. 

Within shooter games AI will try to find a firing location to the target with a variety of other 
behaviours included such as taking cover or reloading in order to kill the player. With this basic 
behaviour set, a problem arises of multiple AI shooting and hitting the target at the same time, 
which instantly kills the player (Barriales, 2017).  
A Tokenised System will address the one-hit kill by taking turns to shoot (and hit) the player by 
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granting an AI a token. This token determines whether the AI can deal damage. Within this system 
the AI can freely enter any shooting behaviours but will deliberately miss the shot and hit any 
location that is not the player if they do not have a token (Barriales, 2017). 
Deciding how to distribute the Token is another measure that designers should be able to tweak, a 
token will have many factors to decide which agent gets it. This may include anything from time 
since last player hit, distance from target, or weapon dependant on how expansive the system is 
(Barriales, 2017).  

Dynamic Difficulty 

Difficulty is a critical factor in games and is challenging to set correctly. (Su Xue, 2016, p. 1) Dynamic 
Difficulty Adjustment (DDA) helps alleviate the issues of manually setting difficulty values and adding 
behaviour to scale difficulty. The use of DDA allows for maximising player engagement by measuring 
metrics such as wins, number of rounds played, duration played and session days and used tuning 
the game to make it easier or more difficult based on success (Su Xue, 2016, pp. 1-5). 
Electronic Art’s Inc (EA) Conducted a study using their match-three genre of games, Candy Crush 
Saga and Bejeweled, which tracked player engagement using the DDA method and found that they 
could optimise play using this method to maximise the player engagement (Su Xue, 2016). 

How can group AI be balanced for a player 
What metrics can be used for balancing games? 

Balancing a game has no standardised metrics that a designer should use, but this does not mean 

metrics cannot be created that will help a designer balance the game based on the product they 

have created.  

Slay the Spire is a 2D rogue-like turn-based card fighting game where the player uses cards and 

attack the enemies based on what cards are pulled from their deck.  

Previously the developers have stated that their balancing approach, was to gather any relevant 

information at the end of a run and analyse the data. This ranged from enemies, cards, relics, events, 

player choices and time to complete (Giovannetti, 2019, p. 9:25). With these metrics it was not 

about aiming to make every card equally good but rather shooting for a more sensible win rate 

target. 

Overwatch 2 uses metric tracking to enable the designers to tweak the live service experience. 

Statistics for each character are collected such as character selection, win rate, accuracy, 

eliminations and damage taken / given to name a few, this can be seen in game from the career 

history tab. These statistics are used to tweak each balance patch by interpreting the data. 

How can AI make the game fair for the player? 

AI Perception Balancing 

Stealth games are known to have perception and awareness models for NPCs making it important 

that they are balanced correctly as to not break the immersion of the game world. It is believed that 

for a successful AI Perception system it must include the following.  

Fairness 

In a stealth game, getting detected will be a pivotal moment, it could be the difference between a 

player winning or failing the mission. Having perception models feel fair, like they are not cheating is 

a difficult task since the models themselves are subjective to what is fair. (Walsh, 2015) 

Consistency 

The player must be able to perceive the AI’s behaviour so that they can strategise and plan, this 
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means creating a somewhat AI predictable. This contrasts to all humans being unpredictable and 

varying reactions between individuals (Walsh, 2015). 

Feedback 

Whilst the player needs to be able to predict the AI’s behaviour, there needs to be affordance to 

help the player understand what is happening, this can be seen within Payday 2 having a radial 

awareness meter that ticks up until the player is detected by the AI. Once detected, the radial wheel 

adds the words detected onto the screen as well as having an exclamation mark at the top as seen in 

Figure 6 - Payday 2 Detection Meter, this directly tells the player that they are spotted and need to 

act. 

Figure 6 - Payday 2 Detection Meter 

 

Perceived Intelligence 

To have an AI that does not achieve a level of intelligence that is believable, is not satisfying to beat. 

This requires having an AI not necessarily be dumb but does not also require it to be smart. 

Balancing intelligence is about having plausible behaviour to convince a player that the character the 

AI is controlling would act in that way (Walsh, 2015).  This means that if an AI hears a gunshot or has 

the player hit them, the expected reaction is to enter an alert / combat state, if the AI was to 

continue with the current state, the AI would not be convincing and looks inept. 

 

Limiting AI Knowledge 

Having an AI know everything feels like cheating and could lead a player to get frustrated. Many 

developers will attempt to limit the knowledge of an AI to prevent this frustration. A great example 

of this would be Alien Isolation. 

Alien Isolation’s AI is held in high regard and still talked about many years after its release for the 

usage of a twin AI controller known as a director system. This system would feature an overarching 

AI that knows all the information about the world, for example, it would know the position of points 

of interests, hiding spots and most importantly the player. With this information it could direct the 

AI towards areas that would allow the steering behaviour agent (The alien) to find and hunt the 

player. By obfuscating this data, the alien must hunt for the player which creates a more intense 

experience as the alien is not mimicking a search state by pretending to know the player’s location 

(Thompson, 2016). 
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Removing Behaviour 

In ‘The Last of Us’ during development, the buddy AI ‘Ellie’ had trouble in combat as she would 

become “a killing machine”. The developers did not want to change the damage output of the 

weapons that Ellie had, so altering firing values and hit behaviour was the route they chose to take. 

The behaviour was tweaked so that when the player is not looking at the enemy Ellie was shooting 

at, the buddy did not need to do damage but still appeared to be in combat. When the targeted 

agent was visible again, the buddy would be required to do damage. This helped keep players 

immersed within the game rarely realising that the buddy was not doing damage (Dyckhoff, 2015). 

Mario Kart – Item Probability 

Mario Kart, although not being an exclusive example of AI balance, explores game balance through 

in-game items probability. Mario Kart 8 Deluxe has 23 Items which the drivers have access to which 

have different abilities (Nintendo, 2024).  

As the player gets further behind the first-place driver, more powerful items are likely to be selected 

in the loot table. Items such as the Star or Bullet bill are the most effective items due to the ability to 

speed up the player and forcefully control the driver’s movement to increase their podium position. 

As seen in Figure 7 Community researched probability distributions for Mario Kart 8 Deluxe (Anon., 

2024), Some items such as the red shell trio are disabled for an AI driver, this is because these items 

are powerful. Given the situation of a driver in 2nd could potentially receive a red shell trio, this gap 

between 1st and 2nd will be easily shortened by the first-place driver being stunned by shell after 

shell with minimal defence from their own items.  

 

Figure 7 Community researched probability distributions for Mario Kart 8 Deluxe (Anon., 2024) 
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Research Methodology 
Quantitative research asks for an individual to fill form(s) with questions asking for opinion-based 

answers with a numerical output after a test has been completed. This scale be plottable data that 

can be used for visual graphics to help analyse data and reinforce statements.  

Quantitative research allows for lots of participants and allows for data to be represented in real-

time due to the data having set parameters. This allows for bar graphs/ line graphs and other 

graphics to help convey better than a table. Research is anonymous so users are likely to answer 

more honestly in comparison to qualitative options like focus groups that are more interactive and 

possibly has a name or ID attached to their result for further feedback. 

Another common example of quantitative testing is a Likert scale; this survey type asks specific 

questions that rank response levels to assess levels of satisfaction. This places a focus on variable 

answers that are not directly Yes or No questions but rather a gradient of options (University, 2021). 

As seen in Figure 8 - Likert Scale, the options are not phrased “Are you satisfied” but rather a rating 

level, this allows for a wider range of results to more accurately measure the customer’s satisfaction. 

Figure 8 - Likert Scale 

 

Qualitative research is requesting an individual to answer a question with non-numerical data, this 

is an opinionated evaluation to a given question which can be used to help further improve 

development of a product or service from detailed user feedback. This data is harder to plot to on a 

graph because categorising data which is alphabetical requires analysing unlike numerical data 

which can be added quickly. 

Qualitative examples include open questionaries that ask for detailed opinions on a topic, this can be 

a question like “what did you like about your stay with us?” (Survey Monkey, n.d.), this allows for a 

wider expression of opinion than a quantitative survey but is not as easily plottable as results must 

be interpreted first.  

Focus groups are also another option to qualitative research, this is gathering small groups to gather 

and have a free-flowing discussion on the topic, this can give a researcher insight into areas that the 

questionnaires may not cover and allows for further questions based on previous answers given 

(Survey Monkey, n.d.). 

Product testing is a research methodology that allows for collection of both quantitative and 

qualitative data about the consumption, preferences or reaction to a product. By using this approach 

quality assurance testing can be conducted and results can be compared against user opinions to 

improve the product. 

 

The research methodology chosen to test the artefact is a mixed approach of qualitative and 

quantitative feedback through the product testing route. The aim of using product testing in this 

project is to use data to identify and improve the AI to become more realistic. Questions will be 

asked about any issues that have come up during testing and how the user would like the product to 

be improved. The numerical data provided by the system will be provided to help analyse the AI 

performance on a statistical level and identify tweaks that can be created to alter the product.  
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Gantt Chart 
Figure 9 - Gantt Chart 

 

Scope 
The scope of the project, provided the student can keep to the schedule, should be completed to a 

satisfactory level and will be achievable. The setup of the project is a large chunk of time due to base 

project structure for AI setup is required and other accessory features need to be created such as 

team states, perception and weapon setup.  

 

The core scope of the project is limited to. 

• AI movement in a cohesive manner focusing on formation-like movement with minimal errors, 

this should be developed early on with iterations. 

• Token firing systems focusing on difficulty scaling allowing for a director to tweak token 

assignments balancing damage outputs based on the number of enemies in sight. 

• System for agents to reach a safe location in cover based on position of enemies. 

• Suitable testing environment for each test 

Additional supportive features are planned such as visualisations for damage output values, 

automatic test recording and animations to show AI state. This is achievable and should be 

considered halfway through development to allow for the results to be used within testing. 

Results and Findings 
The Project criterion to determine if the created artefact is a success, is as follows: 

• AI is capable of scaling damage based on a difficulty value (Easy, Medium, Hard) 

• The AI can move through an environment using a formation like positioning 

• The AI can correctly select cover in an environment 

• The Director AI can move through an environment doing the above-mentioned criteria 

fighting enemies without getting lost faster than the single agent solution. 
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Firing Tests 

Test Method 

The method used for testing firing damage output will be a listener actor recording how much 

damage each unit receives as units fire at them, this value is then totalled and outputted as a float 

value for total damage received. Each test lasts 10 seconds and continues from the previous test. 

The 10 tests will last 1 minute 40 seconds. Every test will be conducted at the same time to allow for 

quicker data collection and recording. 

The difficulty for each test is set before to ensure correct values are outputted for each difficulty 

group. The only failure condition for these tests is an anomalous result (which will be removed from 

data set) or AI failing to fire at the target. In the event of a failure a note will be recorded and the 

artefact tested again. 

Baseline / Standalone Test Results 

Figure 10 - Standalone Firing Tests 

 

The standalone enemies are programmed without a token system in comparison to the director 

system which guides how many hits an AI should have. The standalone AI defaults to a random 

Boolean value for whether the AI should hit the target or not. This means the expected hit results 

will be 50% of the total damage potential. 

In the data collected, the more units in the world the greater the damage output is. The “1 to many” 

tests has unintended results. Expected results should display that the AI miss enemies at the same 

rate as the 1 to 1 test because the AI has the same Boolean hit potential, but the results show a 

significantly higher damage output, almost twice as much. The reason for this outcome not aligning 

with the 1-1 tests damage output is that the AI shoots to the left or right of the target, but it does 

not account for If another target is in that offset location. This offset results in the AI hitting the 

agent next to the target accidentally, this is an unintended effect of the system which requires 

patching, this could be patched through recalculating the output vector or just nullifying the damage 

if not the intended target. 

The system keeps a consistent level of damage between all the “X to 1” tests. With an overall 

damage average of 9.7Hp/s against a single target, the time to kill is around 10 seconds per AI. 
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Based on personal experience from multiplayer shooters, this is a very high time to kill (TTK) 

regardless of game and this value should be adjusted to the game feel. 

 

The “many to many” tests yielded an unexpectedly lower DPS than the “1 to many”, upon further 

investigation it was shown that the group would opt to choose the target that was furthest left due 

to the spawn order. This would create the effect of shooting to the left and hitting nothing whereas 

in the 1 to many the AI would be shooting the centre target which would then hit the targets to 

either side. Provided that AI were hitting the same targets its predicted that the results would be 

similar. 

Director Token System Tests 

Figure 11 - Director Token Firing Tests 

 

Director tests yield different results to the baseline tests; A Significant difference in DPS per person 

in comparison to the average DPS per person in the standalone can be observed with the director 

tests averaging is 50% less for the single target tests on easy. The trend displayed in the results of 

the token system, is that the more people, the higher total damage the group provides. This is an 

ideal result because a player should expect to receive more damage with a higher enemy count, 

whereas the baseline tests show, the more AI targets there are the greater the damage output. This 

result, whilst the potential to be logistically correct, does not provide an accurate result for testing 

damage output values with targets that do not disappear.  

The director tests show that each curve used for calculating when a token is assigned should be 

adjusted to have a lower time to kill (TTK), all difficulties appear to have a very low DPS for a single 

agent, it would take a single unit 35 seconds on easy to eliminate a target, this means that the token 

curve needs to be improved to have a lower token threshold, this in turn would increase the damage 

for a single unit.  

The Token firing system can be seen to be more effective at changing the damage output when 

there are more units to assign tokens to. On Medium (Excluding anomalous test result 10) the 

average builds upon the damage from the easy difficulty and again for the Hard difficulty. 
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Movement Tests 

Movement tests are conducted by timing an AI moving through 3 different sections of an 

environment. A test will consist of 6 AI agents being controlled by either a director system or running 

standalone behaviour trees. This is to test the effectiveness of group cohesion and how they can 

navigate through obstacles. 

Section 1 of the Movement tests is an open area which with an opening into the next section 20 

Meters from point A, this is created to test formations in an open environment with no interference, 

this also helps to see if an AI can manage basic cohesion without breaking formation, results here 

are expected to maintain cohesion with no issues. 

Section 2 of the movement tests is an enclosed area 22 meters long with a width of 2 Meters. This is 

to simulate a corridor situation to test how a formation would mould to match the shape of the 

room. Houses and other establishments that a SWAT team would have to enter will have elements 

of tight area combat which makes having a correct formation important otherwise squad members 

are potentially in danger. Results here are expected to potentially break by losing formation but 

shape together quickly. 

Section 3 of the Movement tests is an area that has obstacles designed to break a squad formation 

by having obstacles in the way. The idea behind this section is that an environment like a house will 

have tables, chairs and other items that will impede the movement of a team and could impede the 

groups or an individual’s path. 

There is only one failure condition for a movement test, if none of the AI agents in the team can 

continue, then a failure is recorded.  

If a lone AI stops moving and gets separated from the group or stops moving, the counter for 

formation broken will be increased. The lower number of times the formation has been broken, it 

would be fair to assume the better performing the AI cohesion is. 

Another metric being recorded in movement tests is time. The AI navigates a full lap from point A to 

B and then back to point A, upon reaching Point A, the time will be recorded. The test will run 3 Laps 

in succession to get an average time which should help determine performance of each system. 
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Figure 12 - Movement Test Route 

 

Figure 13 - Movement Test Results 

 

Baseline tests  

Unreal Engines default “Move to Location” node for AI movement is a quick solution to AI group 

movement. This method yields results that are within an acceptable margin consisting of a moderate 

error rate, averaging 3.4 errors every 27 seconds. In the baseline tests, a single AI would be stuck in 

the middle of section 2 during the second lap, this would cause the stray agent to run from point B 

back to point A faster than the rest of the group. This error drastically reduced the lap time of the 

standalone tests and are considered somewhat unreliable. With the default Reciprocal Velocity 

Obstacles avoidance (RVO), the AI can suitably move through the environment with minimal collision 

in section 3. The AI do not have any structured formation which is clearly visible throughout the tests 

which is undesirable for a working AI group. 

Director Formation 

The current implementation of the director formation system uses a mixed approach of Offset 

vectors and EQS systems to generate a breadcrumb like path that the AI must follow. If the offset is 

inside a collider of a static object (walls, obstacles), an EQS test is ran to find the nearest desired 

pathfinding location. 

The system results show that the time to complete the laps is slower than the other two tests by 2-3 

seconds per lap. The reduced speed would have been an expected result of the formation system 
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needing to run different queries. The unintended result of the system is that the error rate is much 

higher than both the Director location and the standalone AI movement systems. Out of the three 

methods this is the least desirable result.   

Director Location  

Using an agent controlled by the Director AI, this system assigns other units the invisible controlled 

pawn as the pathfinding location. This method manages the final location for each agent and 

refreshes the path every behaviour tree refresh which allows for many corrective calculations. The 

error rate of this system is the best of the three with an average error rate of 0.6 times every 3 laps 

which is an improved result from standalone tests as errors are 5.6x less likely to occur.  

The lap time despite not being the fastest is still close to the standalone test with a nominal 

difference of about 1-3 seconds. The lap time is quick because there are not the positional 

requirements like in the formation system which is an alternative effect of the system but still looks 

cohesive due to the AI still navigating close to one another.  

Cover Tests 

The Cover tests consist of an enemy appearing in random locations near the AI group and the agents 

solving a location to stand at using an EQS query. The time for all agents to reach the desired 

location will be recorded as well as the effectiveness of the cover. This is determined by the 

proportion of limbs sticking out, if the limb would be hit easily then it would add to the failure 

counter. 

Note* This test was removed due to the time constraints of the project, the cover system query is 

generated but not included in the final product. 

Environment Tests 

The Environment tests consist of 5 group agents navigating through a simulated environment, this 

environment is not based on real-life structures but has elements to help test the AI in different 

ways.  

Initially the fork in the road is to test which AI the group should move to eliminate. The intended 

result is the closest to the agent, this is so that the environment is cleared from front to back. 

Next is a sightline test, an AI is placed in the distance with another AI closer to the group behind a 

wall, this requires the group to choose between navigating towards the closest target or shooting at 

the currently visible target. The Intended result is for the sightline test is to choose the closest target 

that is visible. 

And finally, there is a section with multiple AI targets to test the cohesion of the group firing skills, if 

the AI do not cohesively shoot at the same target, then the test gets an error added to the wrong 

target counter. Each failure is on a per agent basis which means if 4 AI are shooting at the wrong 

target +4 is added to the error total. 
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Figure 14 - Environment Test Results 

 

Director Location 

In results for the director location, the simulation was tested 3 times on each difficulty. In the 

current implementation the trend (from non-failure results) that occurs is that with difficulty, the 

time to complete decreases, this is because the damage output is higher allowing for the AI to clear 

rooms faster. In the projects current implementation, the combined features fail on the Hard 

difficulty. This data set consistently errored which rendered the results as a failure. During 

observation of the Director system and through debugging the behaviour tree, it was discovered the 

AI would get stuck choosing between states despite having information to transition into a state this 

left the director unable to move to the next location. This means that the director location system is 

a partial failure because it cannot fully adapt to the dynamic difficulty and requires further patching 

to get more consistent working results. 

Director Formation & Standalone Tests 

The director formation has consistent failure with the group of agents during testing stopping at 

targets with no clear reasoning, this unwanted behaviour and comes from a direct logic failure 

rather than a methodology failure and thus renders the test results defunct. Additional iterations 

require more defined decision to produce effective results. 

The Standalone tests are erroneous for a different reason to the Director Formation results. AI 

cannot distinguish between team and enemy when searching for a new target despite explicitly 

filtering the characters by team, this problem results in any ai groups larger than 2 from seeking to a 

single target. This fault in the system prevents the AI tests from being conducted the same as the 

director making testing an impossibility and requires a core foundation for enemy detection.  
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Discussion and Analysis 
The investigation into AI Director systems and supporting AI techniques demonstrates success in a 

small range of techniques that an AI Director system can be used to manage agents cohesively and 

effectively. The system overall was unable to perform and meet the objectives of this project, with 

the objective of hazard perception being removed from scope due to time constraints and others 

not fully meeting success criterion. Although the project was a failure the literature researched 

allows for an in depth understanding of techniques and how to improve upon the system created 

with potential for use as a framework in other projects.  

Some AI programming techniques proved effective whilst others may not have been the correct 

choice for the system where another could have been used to get more consistent results. 

AI Perception systems prove effective in targeting enemy players successfully providing a result that 

an entity can use to fire at. This system was effective for perceiving stimuli based on team data but 

with the current implementation has some flaws on the decision making from the information 

provided, notably by assigning targets based on incoming information. The current implementation 

could be improved by checking the currently active stimuli when receiving a new stimulus, this 

allows for the target chosen to be assigned for the agent receiving based on information around. 

Alternatively, a Utility Based AI decision approach may be used to determine the desired target.  

Both solutions implemented correctly would create a reactive AI that can respond to new threats 

quicker. 

Using Token Systems to manage the damage output of a group AI has proven to be an effective 

method. The token system meets the success criterion, adapting to changing difficulty based on a 

factor, in this instance it was the difficulty of the game. (Barriales, 2017) in his token system design 

does not detail on how the system they implemented is calculated for providing a token, but with an 

introspective into how games should balance this implementation calculates currently enemies 

perceived against those perceiving and uses the difficulty value against a curve to calculate how 

many shots need to be fired before a hit can be granted. Though this evaluation works a separate 

evaluation of time elapsed, or damage dealt could be used to balance the system which may work 

better for a dynamic scaling system. 

Behaviour trees are a core component in the project and were the primary driving force behind the 

controlled agents, this was chosen so that both non directed and directed AI could use the same 

behaviour tree and have a comparison to show the effectiveness of the director. Behaviour trees 

proved to be effective as a method for decision making in AI, but the inefficient use of behaviour 

trees result in the artefact cause AI to break and no longer move. A state-machine like structure is 

implemented within the behaviour tree which has hindered the scalability that the behaviour tree 

system is designed for as described by (Yannakakis, 2018). 

Within this behaviour tree system the results show that the AI breaks frequently because the state 

gets stuck, this is an issue with state machines rather than the behaviour tree. State machines 

require specific conditions to transition which the project failed to meet, this could have been 

improved by increasing code quality and patching out bugs that prevent transitioning. 

Environment Query systems, although an ineffective use in the formation system, have proved some 

potential in use for other systems untested such as the intended cover system. The creation of the 

cover system was completed but not implemented due to time constraints. As shown in Figure 14 - 

Environment Test Resultsand Figure 15 - Custom EQS Generator, the generated locations from the AI 

could be used to mark locations for the AI to stand. Once additional context is added to the scene 
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such as agent location and other enemies this could change results and a utility-based system for 

cover may be a better fit. 

Figure 15 - Custom EQS Generator 

  

Figure 16 - Cone EQS Generator 

 

Critical Evaluation 

In this project the student has over-scoped and managed their time insufficiently, this led to delays 

and falling behind schedule which affected the success of the project. Due to personal reasons the 

student also was unable to work on the artefact as much as they wished resulting in a scale back of 

the artefact to an unsatisfactory standard. Had the student created contingency plans, the artefact 

and testing could have been more in depth focussing on a core component of AI cohesion such as 

the movement or the token system rather than a broad range of AI concepts.  

With a single core focus, time and resources would not have been spread thin resulting in an artefact 

with insufficient results. Despite the artefact not producing the desired results, effort to implement 

a structure that can be further developed in the future has been created using the type object 

pattern and readable code which allows for new systems to be easily implemented. 

The testing provided has no little depth beyond surface results as very few tests have been 

conducted per feature, key test variables such as movement speed or weapon damage were not 

altered to create a wider range of results. In addition to the limited results provided, the results 

were not iterated upon which could have potentially yielded different results. The weapon firing 

tests could have been created as a dynamically adjusted feature by implementing a scale that the 

user could have dragged using a UI element to adjust the damage. The knowledge gained through 

these limited results does allow for further development opportunities for ways to balance AI and 
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token systems. Token systems notably will be useful for other systems in different game mechanics 

such as AI spawning or movement opportunities for an RTS game. 

Given the chance to improve the project, other implementations such as steering behaviours mixed 

with a pathfinding approach could be tested as an extra result. This may help with the formation 

issues that the Director has currently whilst still pathfinding towards a point, alternatively a better 

formation system without an EQS may be best due to the errors present in the current 

implementation, further development is required. 

The Artefact has limited user interaction which has not proved anything for a player versus AI 

interaction like stated in objective four “How can group AI be balanced for a player?” but does 

include situations against AI to mimic what competing against the system would look like. Testing 

against AI doesn’t give a good benchmark for how players would react due to the critical thinking 

skills that humans possess unlike AI which follow pre-programmed rules, this is why player testing 

should be a focus if development of the artefact continues. 

The research methodology chosen would have been an excellent way to improve the artefact 

allowing for feedback to iterate and gathering plottable data that would have been used to optimise 

the systems given enough time and better management strategies. In the results a pure quantitative 

approach was used and tested based on the programmer’s view which does not allow for a refined 

product, tests should have been conducted using other people. Additionally, the notes from the 

programmer should have been recorded so that the iterative process is displayed, and development 

results can be displayed. 
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Conclusion 
The project failed to work cohesively when implemented and did not meet the success criteria for 

the solution provided due to poor time management and issues within the artefact. However, with 

gained insight on various AI technologies, it is believed that with more time and a shifted focus into 

optimising decision-making code structure, most problems could be resolved to provide more 

accurate results. Individual components of the project show that the use of a director system could 

be used to manage some aspects of AI cohesion for weapon systems and navigation of many agents 

but were unable to complete the task as intended due to errors in the artefact. 

 

Through development and research of the project a wide variety of AI technologies have been 

discovered and new interests found such as Machine Learning within video games. Overall, a greater 

understanding of AI technologies and the difficulties faced when creating in depth systems gives a 

new perspective into AI programming, with a desire to continue developing, refining skills and to 

create a robust AI with a potential to further a career in this area. This project has added more than 

just AI knowledge to my skillset but also has shown me areas for improvement in life when it comes 

to time and resource management and to look at problems through more than one solution. 

If this project was repeated a focus on EQS systems to gather information about the environment 

would be a key element of research and development because of the potential it can provide for AI 

decision making. This would allow the intended objective of real-time hazard perception to be 

compared to a stimuli perception system and test results against the EQS which could make for 

interesting optimisations. 

Additionally, in recreation of the project, using the ‘Lyra’ template from unreal engine to start as a 

solid point for basic AI handling would be wise, because the setup of the project took longer than 

necessary drawing time away from crucial development of AI systems and this template provides 

that base.  
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